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PINECET

SUMMARY

This report presents the development of a Nonstationary Adjoint Statistical
Algorithm for use in determining wind loading on a launch vehicle during ascent
through the atmosphere. The evolution of this algorithm included the develop-
ment of a wind model shaping filter which reproduces the statistics of the winds
as determined from Jimsphere soundings over Cape Kennedy. The wind model
includes the nonstationarity of the winds and turbulence and the technique pre-
sented represents an excellent method for performing response and load allevia-
tion studies which is based on a sound theoretical foundation.

This work was performed at Hayes International Corporation from April
1966 to April 1977 under Contract NAS8-20344, "Statistical Analysis of Wind
Profile Data and Application to Large Booster Control,'" for the Aero-Astro-
dynamics Laboratory of the George C., Marshall Space Flight Center. Mr.

M. H. Rheinfurth of the Control Theory Branch of the Dynamics and Flight
Mechanics Division was the primary‘NASA Technical Supervisor and he was
assisted by Mr. J. R. Scoggins of the Environment Applications Branch of the

Aerospace Environment Division,
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I. INTRODUCTION

The purpose of this report is to discuss the application of nonstationary
statistical methods to computation of launch vehicle flight loads due to winds
and turbulence, and the synthesis of the necessary statistical wind model,

The theory, computational methods, and results of this study which define the
statistical wind model are presented.

During the past decade, several approaches to the problem of flight load
computation for large booster launch and exit from the atmosphere have been
tried. Deterministic wind profiles have been constructed from atmospheric
wind soundings, which when used as the input to the flight vehicle model are
supposed to cause loads which are representative of 99% vehicle loads. The
ensemble of vehicle load outputs directly generated from the wind soundings
have been used to give estimates of vehicle output statistics.. Also, nonsta-
tionary statistical methods have been used, via matrix techniques, to compute
nonstationary vehicle output statistics. All of these methods have particular
advantages, However, in some cases the lack of a theoretical foundation pre-
vents an accurate interpretation of the results whereas others proved extremely
unwieldy when used in practical system design,

This report will present a flight load computational method and a combined
vehicle-wind model which offers a firm theoretical foundation for output process

statistics computation. In addition, it affords accuracy, a physical feel for the

problem, minimal computational difficulties, and direct application to the prob-

lem at hand. The mean and variance of the response of a vehicle mathematical

O



model can be computed directly. No assumptions of input or output process
stationarity are made, The <;n1y assumption which governs the statistics of
the px.‘ocess is that the process (i. e., ensemble of wind-versus-altitude plots)
be normally distributed at each altitude for all times., More generally, if the
winds at fixed altitudes are considered as variables, the whole distribution of
winds would be a multivariate normal distribution.

An investigation of the possibility for the use of the system function for the
combined nonstationary system to define a time-varying output spectrum for
the vehicle is presented. The system function for the wind model may be used
to define the time-varying spectrum for the winds. This system function and
corresponding output spectrum for the winds is asymptotic at high frequencies
to piece-wise stationary properties of the atmosphere at various altitudes
(in the short wavelength turbulence range).

Use of a high-speed analog computer facility will permit direct implemen-
tation of the computations for system output variance and covariance. Proper
implementation of the adjoint equation relationships and relations for correla-
tion functions presented in this report offers an order of magnitude increase
in the presentation and display of major system design features which can be

determined from system output statistical properties,




II. THE SYSTEM MODEL

The system model will consist primarily of two parts: (1) the launch
vehicle equations of motion which are a set of time-varying, linear, differen-
tial equations which represent the dynamic motions of the vehicle during launch
and in the atmosphere, and (2) the wind model, which is a linear differential
equation with variable coefficients. For a white noise input the output of the
wind model differential equations has the same variance and covariance as
the winds, Altitude is the independent variable for the wind model (shaping
filter) equation,

1. MODEL CONCEPT

The concept upon which this report is based is that complete system out-
put statistical properties can be defined by knowledge of a combined wind
model - - vehicle weighting function. System design can be performed by
shaping of the combined system weighting function so as to minimize the vari-
ance and the covariance of the vehicle outputs at all altitudes.

The method proposed and implemented in this report is a computer solu-
tion of the combined vehicle-wind model adjoint equations. The idea that the
adjoint system equations could be used directly to solve for the output variance
of a physical system was proposed by Lanning and Battin, Reference (4). The
basic ideas presented in Reference (4) have since been extended by Solodovnikov

to the form used in this report, Reference (1).

In their simplest form, the computational techniques used in this report

are as follows: Consider a system with input I(t), output O(t) defined by an nth
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order linear, variable coefficient differential equation:

n n-1 d
an(t) Q?t%_(_t_l toapn (t)‘dd—t—ﬁg(—t—) toeee al(t)-TOtﬂ:—)—

i (1) MNP Wi (L3}
m-1

+ aglt) O(t) = bry(t) T e

di(t)

The output of the system may be expressed in terms of the impulse response

or weighting function of the system g(t1,t;) as

O(t‘) =f tl I(tz ) g(tl ’ tz ) dtz
- 0

1(t) O(t)

g(tl’tz) —

For I(t) equal a stationary, random, Gaussian (normal) process with
correlation function R(T)= 6 (), i.e., a white noise process, the system

output correlation function may be expressed as (Reference (1)):

t
R(t],tz)=j g(tlo)\) g(tz- A )d)\ ’ tl< tZ
- 00
ta

=I g(tl’)\) g(tz, )\) d\ , t1 > tz .
-00




Also, the mean of the output process, —(;(_t—) for different times t can be com-
puted by using the mean of the input process I(t) as a deterministic input.
(See Appendix I). Also, in Appendix I it is shown that, if a normal process
I(t) is applied to a linear system, the output O(t) is likewise normal.

Thus, if the input to a system is Gaussian, white noise, the mean output
-(_)—(‘t_) at different times t may be computed from the differential equation of
the system or from the weighting function. With the correlation function of
the output, R(ti,t, ), computed from the integrals given above, the covariance
C(t1,t; ) of the output may be obtained from C(ty,t;) = R(t1,ty ) - —C—)Ta—) —C—)Tt—z—-).
It should be noted that the mean and covariance of the normal distribution com-
pletely define the output process, That is, these two statistics completely
define the system output statistical characteristics.

The launch vehicle mathematical model can be made to fit the formula

ty
R(t],tz ) =f g(tl! )\) g(tz ,)\) d\

-0
if the problem is implemented in the following manner, The system (launch

vehicle) can be represented by

Launch Vehicle
t
VW(t) Equations of o) -

Wind Input Motion

Obviously Vw(t) does not possess the desired properties of white noise. It is

known, in this case, to be a highly nonstationary process. By adding a shaping
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filter to the system above, we can define a combined system which does have

white noise as an input.

Wind Model
I(t) Shaping V,(t) Launch o(t)
- Filter - Vehicle -

White Noise

The wind inputs to the launch vehicle are now generated by a shaping filter:

White noise is the input to the combined system model.

| |
I Wind Model Launch l
N 1(t) I Shaping Vg (t) Vehicle | O(t)
)Y [ > Filter i -
t =
o I l
l__ COMBINED SYSTEM |

DIFFERENTIAL EQUATION MODEL

If gc(tl ,t; ) is the combined system weighting function, then the correlation
of the output is given by

t1
R(tyst, ) =f gcoltis N geltz,N) dn., ty < t,

-00

Thus, the combined system weighting function (impulsive response) can be
squared and integrated to give the second moment or multiplied (g(t1,\ ) *
g(tz ,\) ), and integrated to define the correlation function. The shaping

filter gives a simple method for computation of output process statistics.
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The conversion of the system to accept a white noise input is a mere artifice

which is necessary to get a simple expression for the output statistics in terms

of the weighting function. The white noise input is never really generated or

used in practice except perhaps for experimental verification of the shaping

filter.

The steps in formulating the combined system model are as follows:

(1)
(2)

(3)

Determine the launch vehicle equations of motion;
Synthesize a shaping filter differential equation such that
for a white noise input the output variance and covariance
are identical to the wind variance and covariance;

Combine the shaping filter and vehicle differential equations

and determine the combined system weighting function.

The combined system equations can now be implemented so that the

following information is easily obtained:

(1)

(2)

(3)

(4)

From the system equation response to the mean wind input

the mean value of vehicle output can be obtained;

From the adjoint combined system equations, in the independent
variable t, , the combined system weighting functions can be
computed;

If these weighting functions are squared and integrated with respect
to the second argument, the variance is obtained for each t; taken;
If the product gc (ti1,t; )/t1=k x geltyst: )/t1= ' is taken and

integrated, R(k, £) is evaluated;



It can be seen that system design can now be performed by shaping the
weighting function for the system such as to minimize system output mean,
variance, and covariance.

Now that the shaping filter weighting function and the combined system
weighting function have been defined, another concept,the spectral implication
which can be associated with Fourier transforms of both weighting functions,
follows immediately. Also, an output spectra of the wind model and the com-
bined system model may be defined even though it is time-variant.

System function theory was first introduced in the late 1940's by L. Zadeh,
and others. The system function of a system which is defined by a set of
linear time-varying differential equations, is by definition the Fourier trans-
form of the weighting function for the system; i. e., ¢(jw, t) =f tg(t, . )e-jw(t- T)d‘r.
Also, the frozen time system equations can be transformed t(—)OZive the so-called
frozen time transfer function for the system which is asymptotically related
to the system function.

A major portion of this report is relegated to the task of synthesizing a
shaping filter for the Cape Kennedy winds aloft data which is presently avail-
able. The task of shaping filter synthesis has been theoretically defined by
Lanning and Battin, Solodovnikov and others, but little practical and applied
work is available in literature for the nonstationary case. The shaping filter
synthesis problem has been extensively studied during this investigation, and

several practical implementation schemes have been developed and used.
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2, SYSTEM EQUATIONS OF MOTION

The equations of motion for the launch vehicle are assumed to be a set of
linear differential equations with time-varying coefficients. These equations
are not restricted as to complexity except by the physical capacity of the com-~
puting equipment used. The sole disturbance input to the vehicle system for
this initial study was assumed to be the horizontal wind as depicted in Figure 1,

A typical set of equations are: (Reference (6) ).

(Al (v} = {B}[Vv,] (1)
_ - - -
or (au(t)a%;" + bn (t)adT +cenft) ) Ap ... Am-1 Ya By
Az coe . . .
. . . = . [Vw(t)]
N An 1 e Aan —Yn—‘ ;_Brj

The solution of these equations can be simply written by the convolution inte -

gral as

ty
Yi(tl) = j Wi(tl st2 ) Vw(tz ) dt,

- 00



Vertical

/ V i8 assumed always
acting perpendicular to
( vehicle flight path. ¢ is
small so that V,, acts
laterally on vehicle.

V = east-west wind
wW

h

Altitude

Vehicle Trajectory

LAUNCH VEHICLE MODEL GEOMETRY

10 FIGURE 1
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where Wj(t),t; ) is defined as the general weighting function for the system
of equations., It represents the ith output at time t, obtained in the system
response to a unit impulse at time t,, with all other inputs identically zero.

If the Yi's are defined as follows:

Y, = ¢ = pitch angle

Y, = Y = lateral deviation

Y; = g = engine gimbal angle

Y, = BM(x) = bending moment at station x, etc,

then, the Wij(t;,t; )'s are:

W,ylty,tz) = Wy (t1stz)

w, (t;,tz ) = Wylty, tz)

Wi(t;,tz) = Wga (t;,tz2)
etc.

The w, (t;, t; ) weighting function is illustrated in Figure 2.

Wi(t1,t,)

Path 2

Path 1

FIGURE 2

11
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The time variability of the system response to a unit impulse at various times
should be noted. Solution of equation (1) gives Wj(t;,t; ) as a function of the
independent variable, t, . If the equations (1) are rewritten in state vector

form, we have

{Yy} = [A] {Y} + (B} [Vy]

The adjoint equations for this system are: (Reference (6)).

(v*y = -1a 1% (v")
Wiltiat,) = £(Y7)

These adjoint equations can be solved for Wj(t;,t; ) as a function of t, . This
is a highly desirable form of the system weighting function because it allows

direct computation of the variance and covariance (Reference (4)).

3. WIND AND TURBULENCE MODEL
The wind model to be used in conjunction with the combined system model
must have a random output which has the same variance and covariance as

the winds measured at Cape Kennedy by balloons and rockets. Typical wind

data is illustrated in Figure 3.
Consider an ensemble of wind soundings which have been measured over a

long period of time at regular intervals and which are said to be a statistical

sample of the winds aloft.

12
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At various altitudes two separate statistics can be computed. These are

(1) mean wind values - V_(h;) which is approximated by

m

n
TG >
Vo, (hy) = \SANEY

and, (2) the variance of the wind which is approximated by
Z A ——————
=1 (Vg(h); - Vi(hi) ) 2

n

C yue(Pis 1)

The variance of the winds at each altitude is also equal the standard devia-
tion squared; i. e, va(hi’ hi) = o‘vw?‘ (hi) . It was assumed throughout this
analysis that the wind velocity amplitude characteristic across the ensemble
of winds is normally distributed (Gaussian). This characteristic has been
shown to be a good approximation to the probability density function in past
experimental investigations,

Another statistic for the wind data can be computed by averaging products
of corresponding wind velocities at different altitudes. This statistic is the
wind correlation function. The covariance is similar to the correlation function,
except it is computed for the process with the mean subtracted out and is

defined by

z Vw(hr) ) Vw(hr) ]j [Vw(hs) B Vw(hs) ]j

14
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This function defines the degree of correlation between the winds at various
altitudes., For a Gaussian proces's the three statistics defined above com-
pletely define the process.

Implicit in the wind data is the turbulence characteristic of the winds
aloft data. This is merely another name for the short wavelength motions of
the atmosphere.

The wind model used in this study is defined as follows:

(1) Given a linear differential equation with altitude varying

coefficients, such as

n k i

ay 2 a X
T oah) o= B by (h) i
k=o i=o
(2) For an input X(h) which is white noise and begins at

h = 0, the desired output ¥Y(t) is one wind trace,
(3) If n runs are made, all beginning at h = 0, and we
define these runs as an ensemble of wind data, then the
variance of the ensemble for any h and the correlation
for any h is the same as the measured winds, if the
wind model coefficients are synthesized correctly.
The synthesis of a wind model of the form shown above from the Cape

Kennedy wind data is described in detail in Chapter III.

4. COMBINED SYSTEM MODEL
The combined system model used in this report is composed of the vehicle

equations of motion and the wind model equation. The system equations in

15



shorthand matrix notation are

System Equations

[a] {v;} = (B}[V]

t
Yi(t) =[ Wilt, tz2 ) Vi (tz ) dt,

- 00

and in block diagram notation

AY = BV,

V., (t) Y, =f ¢ Wilt, tz ) Vlta )
- 00

Y. (t)

dt,

with the supplemental equation

t
h=f v (t) dt
)

which relates altitude of the wind model to time after vehicle launch.

Wind Equation

Using the notation defined previously, the wind equation may be expressed

k n {
d "V (h) d""X(h)
T ap(h) dhn = Z bm(h) FPRa
n=o m= o

or

and in block diagram notation

D(p, h) Vw(h) = M(p’ h) X(h)
X(h)

——

White Noise

Vw(h)

h
Vw(h) :f 0OWVW(hl s hz )X(h;)dh,

16
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The combined system model is made up of a combination of the two sys-

tems of equations

(1)

(2)

and in block diagram form is

WN X X(h)

t=o

or

WN >X X (h)

= 0

%
where W, (t,t; ) is the combined system weighting function.

t
sk
- Yi =j Wi (t, t, ) X(tz ) dt,
(o]

t
A Y(t)= B Vy(t) with h= [ v(t) dt
o
D V(h) = M X(h)
v i} Y;(t)
DV, = MX w | AY=BY i
Y, (t)

The equation for the correlation function of a system with a white noise

input can then be written in terms of the combined system weighting function

and

ta o«
R(tl,tl)=f {w; (th,\) }2 d
e}

t % %
R(tl.tz)=f UARCTESRANTE PN
[0}

ty < t,

17
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It is seen then that the combined system concept has allowed the specifi=

cation of all of the higher order statistics of the process in terms of integrals

of the combined system weighting function, Shaping the weighting function

shapes the variance and covariance.

18



111, THE WIND MODEL

The wind model as defined in this study is a higher order,variable coeffi-
cient,linear, differential equation which has a white noise input. The output of
the wind model has been defined to have the same statistical properties as the
winds aloft data, The task of synthesizing the wind model is discussed in this
section and the initial results are presented.

The winds aloft data modeled in this study are the result of two
hundred (200) wind soundings taken over an extended period of time using the
Jimsphere with radar tracking (Reference (11)). Later wind models will use
a larger wind sample of approximately six hundred {600) wind soundings.
This preliminary wind model utilizes the east-west component of wind which
is parallel to the surface of the earth at the given altitude. These winds are
assumed to be acting perpendicular to the vehicle flight path. The dominant
assumption madein computing the statistics of the winds is that the wind am-
plitude distribution at any one altitude is normal (Gaussian).

As mentioned in the previous section, the wind statistics which are approxi-

mated from the two hundred (200) wind samples are:

1, V (h,) = mean wind at altitude h,
w1 n 1

Z VvV _(h)./n
j=1 w1

1

where n = number of winds in the ensemble ;

19



n _
= (V._(h,)-V_(h)).?
j=1 w1 wot = variance of the wind at altitude hi;
n
3. n
-V (h) h)-V (h))
' = l (Vw(hr) Vw(hr) )j (VW( S) w( S))J
J =

n

= covariance of the winds for the altitude range

in question,
If the winds are normally distributed at all altitudes the preceding averages
have a good approximation to the ensemble statistics and higher order statistics

can be defined in terms of these.

Plots of the statistics derived from the two hundred (200) wind samples

are shown in Figures 4, 5, and 6,

There was a significant data scatter in the values derived for the variance

and covariance. This was believed to be due to the relatively small sample

size of the ensemble (200 soundings). The covariance was smoothed in two

directions before it was used; otherwise, the data scatter would have caused
serious difficulty during synthesis of the wind model, Figure 7 is a plot

of the covariance between altitude 10 kilometers and other altitudes

after smoothing. It is interesting to observe the following characteristics of

the variance and covariance plots. The variance is maximum between 10 and

11 kilometers in altitude indicating important effects of winds in that altitude

range. The covariance values are large for grcat ranges of altitude indicating

20
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a high degree of correlation between winds at various altitudes. Correlation
coefficients for winds are not presented,
1. SHAPING FILTER CONCEPT AND THEORY

The shaping filter is defined to be a higher order linear differential equa-

tion with variable coefficients. For this study it is as follows:

at d
an(h)—l F eee +a‘(h)(—i% +aglh)y =

dh™
m
d x dx
or in operator notation
d
D(p,h) y(h) = M(p,h) x(h), p= ah
dn dn"l
where D (p,h) = apy(h) n + ap.y (h) T +e++ a,(h)
am
M(p, h) = bm(h)"a—ﬁm + e bo(h)

Let x(h) be a white noise input with correlation function R(T)= 6 (h- T),
see Reference (1), Solodovnikov,

h
f ghy, \) g{v,\)d\, h< 7
00

Th h,
en RY( 1)

. (3)
Ry(h,'r):/ g(h, \) g('r,x') dx, h >T

00
where g(h, 7 ) is the weighting function for equation (2). Thus, equation (3)
gives a relation between the shaping filter output covariance (correlation)func-
tion and the characteristic of the shaping filter differential equation which is

represented by its weighting function, g(h, 7). It can casily be shown, by
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multiplying equation (3) by D(p,h), that the following relations are satis-

fied by Ry(h,-r ) (See Appendix II).

d

(1) D(p,h) Ry(h,‘r) =0 h>7,p=
d
(2) D(p,h) Ry(h,'r) = M(p,h) glr,h), h< 7, p=4r

d
(3) D(p,7)Rylh,7) =0, h<T, p=g7

d
(4) D(p’T)Ry(h’T) =M(P:T) g(h’T)s h >, p=a—;.

These relations are extremely useful for determining Ry(h,’r )yif g(h,T )

is known or for identifying the left-hand side coefficients ag{(h),a(h)ee¢ ap(h).

It is seen that equation (3) is the fundamental relation between the known
output statistics Ry(h’ T ) and the differential equation which is represented by
its weighting function g(h,T ). This relation must be solved in order that g(h,T)
be determined. Then, of course, the differential equation must be defined from

the g(h,t ).
2, WEIGHTING FILTER SYNTHESIS

Methods for synthesis of the shaping filter have not been developed in

past literature and a combination of several synthesis methods were developed
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and implemented during the course of this study. Because of the small wind
sounding sample (200 winds) and the scatter in the derived statistics, the
decision was made to concentrate all of the initial efforts to synthesize a
shaping filter on a second order wind model differential equation. This shap-

ing filter equation is

2
e N L R R

dx(h)
dh

and the coefficients to be synthesized in the course of this study are

by (h) + Dby(h) x(h)

ay(h), a (h), by(h), and by(h).

Referring to Appendix II, it is known that a,;(h) and ag(h) can be determined
from the differential equation

D(p,h) R(h,T)=10 h> T,
by (h) and bo(h) are more difficult to determine. b;(h) can be evaluated in

terms of the first derivative of R(h,T)at h= il

andh= T . b, (T) can
either be identified after g(h, T ) has been determined in terms of initial

conditions for g(h, T) or it can be evaluated from the equation

D(p ,7) Ryy(h,7) = M(p, 7) g(h, )
. _d
h>rt p= -
For a theoretical discussion of the various relations for by, b;, etc. see
Appendix III.
The va@ious synthesis methods which were used in this analysis are:

(1) Regression‘ analysis to get aj(h), ao(h), b; (h), bo(h), and

a check of the results on the analog computer.

27



(2) Determination of the best constant coefficient equation
[a,(h), and a.o(h)] fit to Ryy(h, 7 ) by expansion of
Ryy(h,'r ) in a series of orthonormal functions, Then,
regression analysis to determine bj(h) and bo(h).
(3) Derivation of analytical relations for b,(h) and bo(h).
(4) Analog computer synthesis of all coefficients using
adjoint relationships and closed loop iterative technique.
Of all the methods tried, Method (1) gave the best results. It was found that
good results were obtained from the regression analysis alone and that these
results could be improved by a final iteration on bg(h) with the analog com-

puter implementation of the adjoint equations for the shaping filter.

Multiple linear regression analysis is a procedure for finding the best
linear relationship between a dependent variable y and a set of independent
variables x; , where the set x; may be interpreted as the coordinates or
basis of a vector space and the dependent variable y as a vector in that space.
In this context, y is represented as a vector sum of basis vectors, the contri-
bution of each component vector being the projection of y on the basis vector.

In the general theory of regression analysis it is assumed that y is
normally distributed about an expected value B with variance @ 2 and that
the independent variables or observations are independent. However, these
assumptions are misleading in that there is no requirement that the X5 be

independent in a statistical sense. All that is required is that they be variables
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whose values xjjare known for each value of j. As far as the estimation of
parameters is concerned, it does not require the assumption of normality.

However, the assumption of normality and independence of variables is needed
for the construction of confidence intervals and tests of hypotheses concerning

the parameters in the linear equation.

The general model for estimating y in terms of x; may be written as

n
y =.E b X

i=1 ! h
Several different criteria may be used to determine the coefficients b;. We
will consider only the case where the coefficients are determined by the method
of least squares. This method for estimating the coefficients has the desired
property that the estimators obtained are unbiased, and among all unbiased
linear estimators these have minimum variance, The sample estimates, bi ’

are obtained by minimizing the sum of the squares of the deviations between

the observed and the predicted values.
m n

2 _ . .. 2

D = ?’ {YJ 2_ bi *ij }

By differentiating with respect to b; and setting equal to O (the necessary

conditions for a minimum) a set of n simultaneous linear equations called

normal equations are obtained.
2 —
by Z x 1 + b, = X1y X2 + e e s + bn Z X1y Xpj = b2 Yj X]j

b]Ex;szj-{-bZZ}XZ?j' +"'+anij xnj::zijzj

ba Exljxnj + b, szjxnj + o ¢ o + bn Exznj = Zyj Xnj
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This set of equations can be solved for the bj , the estimated coefficients
in the linear regression model.

Linear regression analysis has been utilized in two respects to assist in
obtaining the coefficients of the differential equation of the wind shaping filter.
For an input of white noise it is known that the covariances satisfy the linear
differential equations (see Appendix II):
ap(t)d C(h,h)

-1
a® c(n,hy) a® ' c(h, )

dhn toana () —gaa oot dh
+ ag(h) C(h,hy) =0 h> h
and
dch, ) |, a®'cmm) L, .., dC(h, hy)
ah n-1(h) ah BT ay (h) ~an

tao(h) Clhyhy) = DBo(h) glhy,h) + by (h) SEQLL2L gﬁl'h)

m
d  g(hy,h
+ o e +bnl(h) d}(l ) h<h

For a second order differential equation the linear model becomes

d2c(n,hy) ac(h,hy) ,
——— ¢ ) —g— + smc(any) = 0
or )
2
a2c(h,h;) dc(h,hy
= - a (h) - a _(h)c(h,h,)
1 o 1
an® dh
d2C(h,hy)
With this model for fixed h ———-2—— is considered as the dependent
dh
dC(h,hl)
variable and —an and C(h,hl) as the independent variables. All
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2
data for C(h,h,), a_dﬁC(h,h,) , and }%? C(h,hy) are obtained by numerical*

procedures (Appendix III) for h;< h. Thus, for fixed values of h the coeffi-
cients ag(h), and a;(h)can be estimated by linear regression techniques.
Likewise, multiple linear regression techniques may be utilized to obtain

the by(h) and by (h) in

dg(h,h
Y = bolh) glh k) 4 by (n)EpeRL)

where Y is the dependent variable computed for each set of data from

d® C(h, h dC(h, h |
Y = ——’d—}{a_‘!'_‘l") + a‘(h)a—( l) + ar (h) C(h,hl).

The results of the regression analysis are presented in Figures 8 through
13. ag(h) is presented in Figure 8, and the dashed line is the analog com-
puter function generator representation of a (h).

a),(h) is shown in Figure 9, and the dashed line is the analog computer
representation of a,(h). Figure 10 sgows the wind"model coefficient b, (h),
which was derived from the analytical expression for b,(h) presented in
Appendix III, Figure 1l shows a plot of bo(h) which was obtained from the
regression analysis. Also shown in the same figure is the b (t) which was
obtained by iteration on the analog computer. The starting point for the itera-
tion was the coefficient values obtained by regression. Using the adjoint
simulation of the wind model equation on the analog computer, b,(h) was
modified slightly to give the best fit to the variance curve shown in Figure 12,
Figure 13 illustrates the wind model variance taken from the reduced wind

data and the dashed line is the wind model variance using the refined value
31



ICE- TSI

81 [ ¥1 1 01 4
FZ, T JJ_ T T o T o ﬂl, \A\IIINJ/F[_FV I
i 1 T : 1 T . m > T T
MH. H_AH_,., W.ﬂ« *4”‘ + IR WA u.m<, ; ! AR Y 2 N
IR W ! i RN - T T j T 2 I
1 1 R IR i ,A.L ] l 1= ) o N
| i iNEEeE BB T 1 M T A ] IR | 138 I\ !
BE 1 i : ; T — — — T i N
T TW] | ! il N : RFERE R4 RENE , N Y
T T — T , ) T T T T T T T AN
" 0l ; : : ; : - P , —
AL AR NN 5 L RN (U N 0 0 I N EENEE RN NREY. dREN — ] R EEENE L
\ g1 RN REEEENREEE BEE L1 RN EREEN R [ R IEERENERE \
i 1 0 B 0 S O 0 DL S R U U A 60 ) ; I T — ] — ; LMY
i AERRNEN R T T R N il el N i | AN
i ] NN NERRENEE Tl ] RN RN RS o ! i L ALY
1T 1T - T . AN T T - — —— I
1] T 1 T RN R T 77 1 < ﬁ _ 1 | /%
; i i ! i T T T 27 1 i T A S
B T\ T e = R S 7 O + N
T RN I R T T A7 : - \)
AR RENE T T { ™ T T [ B
‘~,< ; 11T R T L T 7 —t | T T
T I BEENI 1 INERRERNEE ] pA7E B! il Ly
] T T M R SR T AL B T ; ;
aBum Y e , A
L - T ! NN
T A\ N I A e RENE Admm : —
[ AV ; IR il R - T
i J TN T ; NEEENEEN ! I A : ;
JINI [ A T T RN B T} T e T * ——t
I 1] | \ | i AN [ T [y T T T " - ’ R
11 il : A L R i NEENEEIN BN ; o S R
T T TN T T MY AN BN : i Y BN
B ! RN o . ; N R . ;
e ~“x~ W, RN R L ]Wwﬁ 1 T L T ! RN RN 1
11 TITT T INT T RSN NS I /AN { R T INREDENEE RS B i
[ e T T e : j ; M X — —t
IR REERENEEL RN RN 7 AL IR T — T 1
1 AR ENERNAY R Tt NS AR [ T i ! R [N LT
S A —HT , , T
Ly ! ; A A T [N RN T T R NEBERESRE BN
Tt [N N T I EERE BN , T T T T INEEEE :
.W uﬁ_ﬁ_%un%?l" AW »,w Akhw_,gk M i »V., .,_, _. _Wﬁ 1 1|. —
T RN NN IR RSN T RN RN T . i1 T MR
t T LT T T [ R R BB BN i T T ! I
I i T : T 1Y i B T M Tt T ™
— 1 I e T _ M I R
! RSN R SN EENNS L SR ERESBEE , ~
IREEE il [ i g . . 1 ; ARSI " SN RSN
IR ) T T _,Aglﬁ_, T H T T T
I L 1 SN RE R N RS SN R ] SN RN SN
! 17 L N HAENREEESEE R TR RS R ,j:__: IR EREE R
L T AR L R
I i a 1T
N NOISSTYOT T
T N T ™
] — zo?<o§§m> ¥0I qEsn - DOTYNY — — =
B [ 1 1 I [ ! 1 i L i
11 NN T ,Qljﬁ [ .W iu _,% .* 1 ] HH
Jll BB ' B T T T3 1 ER0R! B T 1
IR A Y T8 S S AR N I A 11 [ RN f
L1 I MEN ,Lj 1 MH i Tl IDERRENEE i
i , : .
- P HH W I !
! i + , I ?C L .H.ZMHHUH.M.MHOU TAAOW ANIM VSVNI—
! } ] I |0 N i Lr, Lt
IR ] i BEREE RS _;; i INNERAERE) I ]
IRENEERE RN RN ERERE BENEN SN [ SN _h R [

32



33

6 FYNHDHIA
21 01 8
T T T
,h‘ i
= —
{ IR R 1 L
I j NN NEREN N ] T 1
! ] N N B A ; I N O L N
i I i T ! T 11 T T T
)] T T H T | 17\_!
] ] ] i ! i 1
i 1 SN BN H, T ] T
| . i T ! i ] )
I 7 N ] i [ 1] Lt 1 I
i i A r ] BN N O N NN -
i T T - T N NS ] N T
j i j T BRENE RNNEE I
~ “ ; - N NERDZ i
T T T ] =~ N
I T RN T I
] T A i
IR N T T |
T T I = T
u_ A_ _,W\~ R EENE i T % 7 T
1 1 T i T 1 T
T i O T i ]
T I T 4 RN
1 RN T ﬁ T
IR i I ] I | L1
_ ] " EOEREENEDEE) EERE!
§ i 1] i { R
L LTI , Ll o ] ] ]
ISSTYDTA AREEENENEE : i
NOILVOIAIYT A Y04 gdSN - DOTVYNV — A T - —
L 1T RSN RN T T =
, Hr EREREEY 4 g T T
1113 T T i T
= NREAZ SRR I I R
J,_ ”\\\, T w L_r».
! , ~t 2 T T
1 ,4 — il
1 i [ [EREN
NN T ]
T T T T T
1 [ ! EERNENEERNEE ] o] i
= _, i I A T A
N T 1 1 g H NN R
| i T I R "
T T T T 8
T NSNS R Ay SEEEEa. H o
T = T T T T T
- T
) Te INJIDIZIAFAOD TAAOW ANIM VSVN 1 M T w T
. [
| | (N 1. (! I RN
T , " T ) ENE NS ERE u SRR
T ] ] T 1 T T i I
T e r
DI R O A T T T |
NEENSENN NSNS RN DS NN ERE SN )




01 ¥YNDIA

2L I 8

91
RN 818 1 B T T T T s o e S BSamun e SEEEE AuE!

I T 1 B RSN T T ' - d ' T T I T T i
1] BRENRN T I e i jp.j, > v 1 - : N RN ERNE ;
L NN R IR R RN 7 T H T B 1 : T : , :
IR P uEe HE N 1 N R L i BENE R
A AN G e AR B P e , —+ —

/ [ : . K i : ! ; I I i : ! I i
T 1 T LI 1 N T 1 T T 1 X - +

| "45,“” . = [ A — T

i : . ! [ i j | , 3
RN S — — - : T ,
T : T T 1 7 [ L ] B C T P! C
A T = SRS N IR RS I N S 0 S -

; 1 , -+ - IR R I , i T T [ T T .
- . : H —t — P | - + —

J [ [ T [N T i C T T EREBEEBEE

: ! R LB R S T
N T I i ) ' - ————t 4
— -t — , — ey —
. i i 1 T IR T
T 017 k R R ; [ S _
Bjceeesasos SEeESE e Eemas SeeeReaSeRaEANAS —

J] ! . ' . P ! | |
i T A R T 10 S A I R T
; I T T ] R f ; T Tt = T T
T , , T , T ; M 1 I IBREERNE :
— ; e B , . i bty :

# - T T =t — t — ,v ,ﬁ_ “, %4 }

7 i T , T T T T ul .
%w’-\ V“ “,ﬂ T , ,,. T : M_, : ,,; ,<~_~ﬁ ;» .
S , I 4 ” i i “ t T ,
——— T : t , , , - MDA N1 NRNE O

R ; . ! i I i IR T
%ﬁ I LM,, T I SR e ’ — T T
) - i IS NS S - ; s BES ESEEnEE|

I = T 1 — ! N N BEEEE R

| I ST AN H N [ ! i g 1 1 |

., T i ——f— — _ — e : - _

| [ R — .ﬁw 4,,," i st ! 1 ¢ : }

1 T T -+ : —+ : — g ”, i ; ;

i | —_ i R RN T ) T ™ T : -

P j~|ﬂ T =T + + + , ¢ . Il L

ww —— f s i N \1, ! 4,1 H /,, Tt * o -

=TT T -+ s + . No : ) !

i N [ 1 T 7 T " ™ r

T L T " ? 1 BEN o
L. ¢ H ¢ —t _—
A uotssoadoyg —~ _ - ; i ,

! R RSy Sn— -4 A S SN R —
T 1 i : j B T
I - TN 7 T T , =
IS e N 4 T ; =
] . 1 N . 7 RS NN T - s

i t . i ! = s + e
- =t \(fﬁ 1 I IR A BN 7 1 4ﬁPm
| H | H — \ hnﬁ\MA ' ! [ L RN EBEE RN -

et NI - B4 ,, N R . I T [T}

S R S £ . — RS DREYS SEEEY PN S (3) 'q.

i - ey — A H i ! i * =t q:

: T T 1 N 1 T e ! - -

i ! T T T— ; ; 4 : 1 H T ——

i LIA -t . ' | ;,,,A$\.;g. i T - IR T 1 = .

; 1 L AY - T 111 T ! 7 T ] 1 T T

! : — N . W AT , : T REENEEES BERE —

H il s \ ; RNV A RN ~— . + + ——r i R
SN A e T T T T
; RO SO N S T NN SR SRS EREEE SERS SE

G R AU AN S RS T N AN AR IO M I AR NN IR A I

1 S M A W I . -

m R T —t , (3) 19 INFIDIZIFOD THAOW ANIM VSVN —

RN N S
RN SEERS NN i . RSN BRI IR I 1= ! 1 I 7
BENTESREREN il ; IR | HEEES B i i RN IR

34




35

1T 39No1g
T 7
] T
— 1R
] :
!
]
B
]
1
i
!
] )
V |
T T
,ﬁ B 7
il 4
| y,
W | /
1T 1 | it
1 ! AN
T , T T
,_ﬂ NI~ V- H,,
1 i I 4 *] 7 .
i |5 L .
L T
i i
—+ - , 7T
T 7 4 i
T | ! 7
SRR ]
= ! i P T
I 1 ] ] 1T
; HL_ _ A ” 7 \ﬂoﬁmu..nwmuob. I0¥ pas|
I Soreuy
i/ |
1 H
T V.
»
ST Uy +——
ssax8ey By
i L
} 111
T T RN
I | NN
N { b
1 o L_
{ ﬁ (3) 9 INFIDIFITOD TAJOW ANIM VSVN
i 1
1 qﬂ i L N BN N b
I 1 1 1 L I A NEEE INENEEEEEEERN
I 1 : [ i JEEEE MR RSN BEE iU




Z1 J4NOIld
01 9

T T 1 AR LA AL LR R ST AT A T T1 T T
T ] O NV
1 e Ll ; I e L
I Y N A N ENENREN
+ DA S I | i oo oy
! ! T SR ISR ; L S
B 11 ! ; j T T T A
| Li - i . ! IR j ,N
! | t : ! : ] IS REERERE N T
il i ! R | 1
" xmr I ; o] — W_L_ﬂ~“$ #,ﬁq_ﬁ | WMFW
| i . R T 1 ] :
! ! : » : L T SN EEENEERNE
_ 1 " — N I N N
- . : — ——t
M m, i 1 7 +%, V_, R PW\\,\
i i ' i i T + ,
1 1] | 1R T ! SR A
) , : } - A
1 ey [ ESERE RSENE NS R
I L | T 7
] ] I T30 I I 1
+ ! T A T
L i . - I
! _ , e ——
‘m‘ | F ,l~
1ot T T H
W «L
| 1
: i I
i R i
i ]
. ' r#
RSN / 1
o : I It
I O SIS
L Wﬂ,\"
T T D ANEEE
L R
— lm\,, i
\,,h
. . |
Neaa DS e m S R
N ; - . —
; : ; BN T 1 T
RN RN ] i T T
,ﬁmp,,:ﬁ J L1 T N
T 1 1 T
f T
! ] - RN
| | R [ T 7
o BEEN EERENN i T T T
| RS EEENEE ! BEEENRE BRI
! ¢

o  DOTVNV WOUJI QEAIYIA

(3) 9 INIIDIAAFOD THAOW ANIM

N

,_i_,t

IBERE SRS NN IR
T

|- -4

]

,ﬂ_
,_NﬁAV ,“.Jlﬂl, "

ﬂ_ii

| 1.

I I

BENN BEDEEENENE BE

36



of bg(h). The variance is extremely sensitive to values of by(h) and b;(h).

A better fit could have been obtained in the curves of Figure 13 by adding

another iteration on the analog, but was not considered to be practical

until the refined wind statistics computed from the larger wind sample size

is available. An analog check of the coefficients a,(h) and a,(h) determined

by the regression analysis was made. The verification was made by solving
D(p, h) Ry(h, T) = 0 h >r

for the proper initial conditions. Figure 14 illustrates the fit to the smoothed

covariance data obtained with these coefficients. Reference is made to Appen-

dixIII for the theoretical aspects of this verification.

The wind covariance of Figure 14 was determined by considering each alti-
tude in one thousand meter steps beginning with one thousand meters and deter-
mining the covariance of each altitude with all others above it. The curve
‘marked (1)is the covariance between one thousand meters and all altitudes above
one thousand meters up to ten thousand meters. The curve marked{Z)is the
covariance between two thousand meters and all altitudes above two thousand

meters, all values were determined by the techniques explained in Section II-3,

In the areas 0-4, 10-18 kilometers no comparison to the NASA wind data
covariance was performed on the analog computer due to insufficient data
sample size, although coefficients for these altitudes were determined through
regression analysis, The data point sample size increased steadily from five
hundred meters up to its maximum at approximately eight thousand meters, and

decreased steadily above ten thousand meters..

31



€1 3UYNOI1L

Al 1] 7l N,f ol 1 | 1117 11 R SRS 0
o W~ NV [T t . T N
. ! I . i i
! _ e
t N T = T
! _d\# | | i |l ﬂ__, “,,
t T NOILVINWIS DOTVNV A4 } ) T ! os
R T H T
T —r FAONVIYVA TAAOW ANIM IO NOILVOIOIATYIA e t T
I I . ) T T I d T
T ; Ll S . N 4l 5l T e L1 i
IR IEERE N 41 Tyl NEDENEE 1) L ! | I ;
I N 1 ! I IBREE N 1 N ! BN Va2 : ;
L) i ; T ¢ R 1 L T 1 [ b ! [ 1 H ]
_ , * T ,, T 17 _
1 T , , [ N A AR i i i
1 + i ;i 1
, T i T f , T T .\\_\ T 001
[ : 1 R i i B f 1 B 4 1
* 1 i T t t | = ! y I I VA4 I 11
| { . : R . ; ! Ly y AN HIl !
| L TR L N B : /71 N I i
SN B I R T T yREEEE AEER f 1
“L,.ﬂ i T T ) T 1 Jl\- ! ro T i ! I
T SR i /AR B A !
! i i ! T T 7* i T t T
1 Anr/./, T T K \\\ * T i
| : RN L i K ! T Tl
I REEARN i | IR ; . — T 17 T i I T -— 061
* A NN , : W 71— n O N I
T L SN T / _ «
I 3 : B N\ O O I P 1
_ T N A - - 4
T 1 ) N Y 1 i ! T v | 1
1 T , . : ; : ~ : \\\ . T f b
| O A O N A VI O L OO ! 77 B R 1
“ I L_, ﬁ,,;“.‘ rA“ i H I T i N AV — k : , —— =
, e AN - v —_ , . 3002
: | N I S . ; ! .N\\ i L (399
I s it P : L B .
T A i , Yy 4 ! 5 ; 4
: A N T i 1 ) s
T M ' ; H It h I
| T R 1 T T
; . A R i 27 i .,
4 I I D SN B B I VRN N I i
L L LT N TN Bl IR GG RN — 1 ;
i 1 B TS I T V. SN T 1 T -
' REE T AR - _ B , 052
3 i b3 N SRS RRP 25 NN ] ! , _
(sBurpunog PUIM VSVN) = r 7 R a0
XTI3eN T 1 i ‘
9DOURIIBAOCYD) PUTM SE T q
Soreuvy [9PON — — — SR I i
T ™ NN [ — 1 100¢
N R H e
; [ H } 1 SN R AN RN
{ i . | v HEIR T ﬂM i Il
+ i T (3 °3)D ADNVIYVA TIAOW ANIM VSVN ] iy
] INEENS I IEESESEREE RS T T N S 7
I ! M RS ] g ! i
H IR I I H L ; _ " ' !

38



1 71 01 8 9 v 4

7 1 WA - PpPINTY

(sBuTpunog PUTM VYSYN)
90UBTJIBAO) PUTM

cd

UOTIBOTITISA
Jaqndwo) JoTsUY
ndqno x937Td Sutdeug

SOT18T3RIS PUTM
*SA
gndqng a947td Furdeyg

1T ZENDIAL

NOIIVIAWIS OOTVNV Xd
HONVIMVAOD INdALN0 HALTIA ONIJVHS 40 NOILVOIATHHA

o¢c

09

06

021

081

012

1 44

:S/ ;W 2?doueLIEAOD

39



v, EXTENSION TO THE FREQUENCY DOMAIN

1, POWER SPECTRA AND ZADEH SYSTEM FUNCTION

One approach to analysis of a system with time-varying coefficients is to
"freeze' the coefficients at a given altitude and utilize the power spectra tech-
nique of analysis, This approach can give good results if the coefficients are

sufficiently slowly varying.

For the wind model developed in this report

dZ

d
=+ a,(h)a‘f + ag(h) y=

ol

d
b.(h)a% + b (h) x

if we fix the values of a,, ay, by, and by for a particular altitude h* the

frozen time transfer function for the system is

y(o) _ by(h') jo + bo(h')
x(j0)  (jw)* + a1 (b*) jo + ag(hx)

and y(jw) _ . ;
(i) = lim H(jw, t) ,

() === 00

thus, ) and H(jw, t) the system function, are asymptotic to each

x(joo)
jw
other as w——mo ., For a system with transfer function '}X{%‘;;—, with a

white noise input, the output spectra is
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Straight line asymptotes for Gy(w) are shown in Figure 15 for various
frozen time altitudes h*. It is interesting to note that these spectra are in
the same range as the NASA data, This result would be expected, although
there is no reason to expect much closer correlation, even for the slopes.
The altitudes near 8 KM compare best with the NASA data. This result is
reasonable since the greater wind activity in the 6 to 10 KM altitude range
would likely be more of a dominant influence on the NASA spectra.

To utilize fully the wind model in frequency domain analysis, a further
extension to a time-varying transfer function may be realized by application
of the Zadeh system function concept.

The system function is based on an extension of a stationary analysis
technique. The conventional steady-state as well as transient analysis of
fixed linear networks is based on the use of a function H(s) or H(j w) which
is variously known as the transmission function, transfer function, frequency
function, etc. H(jw) may be regarded as the Fourier transform of the weighting

function. Mathematically, this can be expressed as

o0
H(jw) = j Wit -1) e 1T 5o (4)
o
The fundamental characteristic of fixed networks is that their impulsive res-
ponse is dependent solely on the age variable t - 1. No such property is
possessed by variable networks, for in these the impulsive response is of

the general form W(t,7). Nevertheless, by analogy with equation (L) the

time-varying transfer function, called the system function by Zadeh, is defined
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by the relation
w .
H (jw, t) = J Wity 1) e T g0 (5)
o

In both equations (4) and (5) the weighting function W(t - 7)= W(t,T)= Ofor t< 7
is required for the realizability of the system, and the upper limit of integration

is t. Making the change of variables X = t- T , equations (4) and (5) become

[+ 0]
H(jw) = fwme’”’)‘ dn (6)
(o]
and 00
H(jw, t) =f Wt t-n) e N an (7)
(o]

2, USES OF THE SYSTEM FUNCTION

In contrast to H(jw ), H(jw,t) is a function of jw involving t as a param-
eter. It has been shown that H(jw,t) represents a natural extension of the
system function of a fixed network. It appears that H(j w,t) not only possesses
many of the properties of H(jw), but also can be used in a similar manner to
obtain the steady-state and transient response to any prescribed input. Use of
the system function in input-output relationships is considerably more compli-
cated than for fixed systems since variable coefficient differential equations
cannot be transformed directly to obtain the system function, Methods for
obtaining system functions will be discussed later, Uses for the system func-

tion are as follows. The system output is
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o0 -'wt
X(t) = f H(jw, t) M(jw)e‘] dw. (8)

-00

M (jw) . the input to equation (8), is the Fourier transform of M(t), that
is

-jwt
e J

o0}
M(jw) = f M(t) dt. (9)
-00

The statistical parameters (for stationary or non-stationary inputs) are

00
R (t, v )=f H(jw, t) H*(jw,t) Sxx(w) dw (10)
-00
and
o
- : 2
a2 (t) -J;o IH(Jw.t)I S_ (@) dw (11)

where Sxx(w) , the input power spectral density, is

0
. . T
- -jwT lim d 12
Sxx(w) fe d'r[ w[Rxx(t’t+T) t] . (12)
-00 -T

If, in addition, the input is a stationary process, equation(12) reduces to
o0

S (w):fR (t-r1) e dot-T) g, (13)
XX X

=00

If the input is further restricted to be white noise
R (t-1) = &8(t-T)
XX
and

S (w) = 1
XX
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\

which simplifies equations (10) and (11) to

o0

Roo(t ,T) = ]H(jw, t) H*(jw, T) dw

o (t)?

3. COMBINED SYSTEM FUNCTION USING SHAPING FILTER

~00

0
=f lH(jw, t) lz dw .

-0

(14)

(15)

In order to take advantage of the simpler equations resulting when the

input is white noise, the concept of a shaping filter was developed. If the

system shown in Figure 16 is replaced with that shown by Figure 17, then the

combined system can be

m(t) Time Varying x(t)
et >
) System
Nonstationary Output
Input
FIGURE 16
SYSTEM BLOCK DIAGRAM
8(t-1) Time Varying | Wg(t, 7) Time Varying
Filter System Model
FIGURE 17

X(t) = WC(t, T )

SHAPING FILTER SYSTEM BLOCK DIAGRAM

treated as a time-varying system with a stationary (white noise) input, shown

by the block diagram in Figure 18.
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65(t - 7) W (t,T)

PR COmbined
System Filter

FIGURE 18
COMBINED SYSTEM BLOCK DIAGRAM
Mathematically, this combined weighting function w (¢, 7) is obtained from
c
Wf and the system weighting function Ws by convolution. That is
t
W (t,7) = I W (t, 7)) WAr,,7) dm (16)
c s f

The combined system function can be obtained mathematically either by
transforming Wc(t, T ) or by combining the two system functions Hs(jw , t)

and Hf(j w ,t). Two equations for this combination of Hs and Hg¢are given

by Reference (18):

aH dH "H_ 4™
H (jw, t) = HH, + - T - ; (17)
T T T o) at nl g (j0® dt?
where n is the order of the original system, and
. _ a4 . .
HC(Jw,t) = Hs( It + jw, t) Hf(_]w, t) . (18)

Equation (18) holds for any Hs which can be expressed as a power series. The
mathematical difficulties of equations (17 ) and (18) are eliminated by an adjoint

simulation of the combined system and filter to obtain Wc(t,T ) and transform

this to get Hc(j wst)
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4, OBTAINING THE SYSTEM FUNCTION

Consider the problem of obtaining the system function for an equation of

the form
n n-1 d
e e o i RELIEW TR S () o
(19
m-1
= bmm—%ﬂ b obma (0 e 0y (4 x(e)

where ao(t), ar{t),;e.. an-1(t), bo(t), bi(t),... bm(t) are functions of time,
the leading coefficient a can always be set equal to one without loss of
generality. In operator notation this equation can be shortened to

A(p, t) Y(t) = B(p,t) X(t) where p = . (20)

dt

Note that the system function H(j w,t) is the Fourier transform of the
weighting function or impulsive response Wi{(t,7 ). In equation (20) if X(t) is
a unit impulse, then the output Y(t) is the impulsive response. Mathemat-

ically, this is expressed

Alp,t) W(t,r) = B(p,t) &6(t-7). (21)

The system function is generally obtained from equation (21) either by

solving for W(t, T) and transforming, or by further manipulation to obtain

H(jw ,t) directly.
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In determining the system function by the Green's function method, the
system function is obtained from the impulsive response by means of equation
(7). The impulsive response is in turn determined by using the one-sided

Green's function as follows. If a solution exists, it must be of the form

n
W(t,7) = T ¢ (t) §; ()
i=

where the ¢i(t) are the solutions to the homogeneous equation
The q;i(T) are not determined directly, but follow as a result of the follow-

ing procedure., First calculate the Wronskian determinant, W(T):

w(r) ao() e (7) b (7)

¢’ () d27(T) e

¢1'(n"l)(_|_) e e . . b (n-1) (t)

n

The Wronskian is used to determine the one-sided Green's function from the

equation
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) (-1) n-1

= m ¢ (t) 2 (t) o v ¢h(t)

G (t, )
$T) gz (D). .. & (7)
¢l/(T) ¢ o o e e (22)

T S

n

The one-sided Green's function is related to the impulsive response by the

equation
W(t,7) = { b_(r) G(t,7) -
m
[ G, ] 4+ (T S [ (1) G, MY uleer) (o

Note here that if B(p,t) = bo(t), the impulsive response is the product of
bo( 7) and the one-sided Green's function G(t,T ). Derivations of the equations

of this section can be found in References (16) and (18).

5. SAMPLE CALCULATIONS FOR SYSTEM FUNCTION

USING METHOD OF GREEN'S FUNCTION

Consider the problem of calculating the system function for the first order

Euler equation;

= Y = B(p, t) X(t)
a+t - P
The homogeneous equation
o (6) +|— (t) = 0
¢ att ¢ -
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has the solution

t) = !
i T oatt
Its Wronskian is
1
W(T) = 9(T) = ==

and the Green's function becomes

sy = ) atT
Git, 7 ) W(T) att

If B(p,t) 75-1, equation (22) must be used to determine the weighting function.

For simplicity B(p,t) = 1 is chosen and the weighting function becomes

W(t, T) = G(t’T) u(t"T)
= G(t, 1) t =z -
= 0 t < T

The system function corresponding to this weighting function is now determined

from equation (7),

b . 0 .
H(jw,t) = f Git, t ~1) e N an f 2att-M] ek o
o o a+t \
® 00

att -jw X ~jw\
= - — A

att ,[0 ¢ dx a.+tj € dx

o]

_L 1)
T jw att (jo\))2 (24)
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Several interesting statements can be made about equation (24); first, the
poles of the system function are constant (two poles at the origin) as required
for realizability of the system. Another point of interest is that there
are two poles for a first order system. In general, for time-variable systems
the system function will have more poles than the order of the system. In fact,
if the number of poles is the same as the order of the differential equation the
coefficients must be constants ,

Additional insight into the system response can be obtained by showing
the system function as a family of Bode Plots. This is done for a =1 in

Figure]9; Figure 20 shows a three-dimensional plot of the same information.

6. A COMPUTER SOLUTION TO OBTAIN THE SYSTEM FUNCTION
If equation (21) is transformed with respect to v, and the definition of

H(j w,t) is applied, the result is

.

A(p,t) H{jw, t) ert = B(p,t) ert . (25)

Performing the indicated operations, noting that
YA (p,t) jut _ YA (jw,t) jot
e = —_— e
dp 9 (jw )4

and

ot . jot
B(p, t) Y = B(jw, t) e’ ,

we obtain after minor simplifications, the differential equation

127 Al t) d"H(jw, t) 9 A(jw,t)  dH(jw, t)
- . T ——————————— LI Y + L ? 3 .
nt 3 (j)n d+n ¥ 8 (jw) dt t Aljo, t) Hijw, t)

= B(jw,t) . (26)
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In general, this equation will be complex and its solution will be

H(jo,t) = H (jo,t) + jH, (jw,t).
Separating equation (26 ) into real and imaginary parts results in two similar
equations which must be solved simultaneously to obtain H(jw, t). While this
solution is not practical to obtain by hand, the equations can be'solved by either
analog or digital computer.

For the wind model differential equation, equation (26) is

2 . R
['&%f Fa (S 4 e <t)] H(jo, t) o = [bo(t) + by (8) f;] e M
which becomes
(j(.o)2 H(jw, t) + 2jwH(jw, t) + H (jo, t) + a1 (t) [ ItI (jw, t) + ij(joo,t)]
+ ao(t) H(jw, t) = jw by(t) + bo(t) . (27)

Separating equation (27) into its real and imaginary parts

H + aH -2wH. + (a —wZ)H -a;wH, = b (28)
r T i o r i o

2 -
Hi + alHi + Zer +(ao—w )Hi+aler = wby (29)

results in the equations which are used later to obtain the system function

for the wind model differential equation.

7. APPROXIMATE METHODS OF OBTAINING THE SYSTEM FUNCTION
The differential equation for the system function equation (26) can also be

solved by several approximate methods (15, 18, 1). In general, the utility of

all of these approaches is limited by restrictions on how the parameters vary.

One method, which is restricted to slowly varying parameters, is especially
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useful in showing the relationship between the system function and frozen
system function. The frozen system function is obtained by conventional trans-

form methods for stationary coefficients and is

- B(p, tf)
H (jw, t,) = —2121 0
£ R tg) . (30)
Re-arranging equation (30) by solving for H(jw,t),
| 3" A n
. B(jw, t) 1 9 A dH 1 d H

H ,t = . 2 + —_ 4 v — ————— 31
(Joo, £) A(jw, t) A(jw, t) 9(jw) dt * n! 9 (jw)" dt (1)

Thus, the frozen system function can be obtained from equation ( 31) under the
assumption that the derivatives of H(jw,t) are zero in the time interval under
consideration. Thus, Hf(jw,t) may be considered as a first approximation to
H(jw ,t). This one approximation will be enough when the coefficients of
equation (21) do not change appreciably during the interval inwhich the im-
pulse response practically differs from zero. Furthermore, for high values
of the input frequencies the exact transfer function tends asympotically to that
expressed by equation (30). This is so because where these components of the

input are concerned, the system may be regarded as constant.

When the coefficients of equation (21) vary slowly, a recurrence formula

for H(jw,t) has been developed (1) so as to obtain

1 1 9"A d"Hia ... ,0A dHj.

T A(w,t) | nl 8 (jw)P at ™ d(jw)  dt (32)

H.(j(x), t) =
1

as successive approximations to the exact system function. With the quantities

obtained from equation (30) as Ho(jw, t) we can write the following series for

55



the system function

H(jw,t) = H,(jo, t) . (33)

n M8

8. HIGHER DEGREE OF FREEDOM SYSTEMS

For an N-degree of freedom system with a single input, as might be en-
countered in the study of a missile/wind model, the preceding computer method
in more general form is again applicable, although with much complexity. Con-

sider the n simultaneous equations of motion

Ay (pst) Yi(t)+ Az (p,t) Y (t) + -+ Amn(p,t) Y (t) = Bi(p,t) X(t)
(34)
Agi(pyt) Ya(t) + Azp (pyt) Yo (t) + -+ App(p,t) Y (E) B, (p, t) X(t)

il

Ani(pst) Yi(t) + Apz (pst) Y, (t) +°°+ App(p,t) Yy(t) Bn(p,t) X(t) .

By the same argument used in obtaining equation (25), n simultaneous

equations for H1 (jw,t) are obtained

. jwt . jwt . jwt
A (pyt) Hi(jw, t) e’ 4+ A5, (b, t) Hy (o, t) & 400+ + A5 (p, t) Hn(jw, t) &

= Bylp,t) "t (35)
where i=1, 2, ...,n .
Equations ( 35) separate into 2n simultaneous equations in the real and
imaginary parts of Hi(j- w »t)e These equations will be similar to equations

(28) and (29) in form, although more difficult to solve.
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9. WIND MODEL SYSTEM FUNCTION SIMULATION

The objectives of the simulation of the system function of the wind model
were: (1) to determine the feasibility of the computer method; (2) to investigate
the inaccuracy of using the frozen system function as an approximation to the
time-varying system function; and (3) to determine the system function for the
wind model of Chapter III. Since the simulation was proceeding at the same
time the wind model was being developed final coefficient values were not
available and the third objective was by-passed. Plots of the interim values of
wind coefficients used are shown by Figures 21 thru 24, Some work was
done simulating the final wind model and these results are discussed.

The simulation was done on a REAC analog computer. The operating
range of the independent variable (t), which for the wind model was altitude,
was allowed to run from 0-20 km, Coefficients of the interim wind model
were only specified over the range 0-12 km. Frequencies for which H(jw,t)

was simulated were w=0,1and w = 0,01,

In scaled form equations (28) and (29) become

L] LN Y ' .
Hy } Hyrm a, al ?r y SHyipo I:{I i aO.I:l’lHrm
Hrrn H aim Hym Hym Him Hrm
rm
(36)
2o H, + Hrm ©” l Hy + PmHimoe [ 2 Hj \ bom | Po
2om Hym Hem Hyrm Hrm aim [\Hj Hrm |Pom
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Hi _ . Him aim _a_.l.._ Hy 2Hymw [ Hj aomHim 3o E_l__
———————————— L 2 - (13 r — )
Him 21m Him Him Him Him aom/| \Him

Him
. 2 . H
¢ Hin (H; alnrltliHrm“’ 21 (=) 4 Pimw b1 (37)
Him Him im aim Hrm Him blm

Substituting the appropriate maximum values into equations(36) and (37)

gives the equations to be programmed.

For w =0,1 (H/H terms are written as H)

H_ = (-0.5H + 0.2H,)) a; -(a -0,2) H + H, + b

r Tr r 1 (o]
ﬁ1=-(o.5ﬁi+o.2ﬁr)—al-(a -0.2) H -H + 0.15b;.

For = 0, 01

H = (-0.5H + 0,02H,) a; +0.1H, + H (-a + 0.002) + b

r r 1 1 r [o] o}
H. =-(0.5H, + 0,02H ) aj -0.1H + H,(-a + 0,002) + 0,01 by
1 1 r r 1 (o]

Figures 25 and 26 show the computer diagrams for these simulations.
10, RESULTS OF SIMULATION

In order to check the accuracy of the simulation it was necessary, since
H(jw , t) was not calculable directly, to devise some other method of checking.
As the system function must approach the frequency function, or frozen system
function, as its coefficients become constant, the output of the simulation with
constant coefficients must be the frozen system function. This was done by

freezing the time input to the function generators, and the results compared
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with the calculated frozen system function, This comparison is shown in
Table 1 with some sample computer solutions shown by Figures 27,
Agreement between calculated and computed values was good, and at least
part of the error can be attributed to inaccuracies in the simulation, Dis-
crepancies were reduced considerably for the w = 0,01 case by increased
care in setting coefficients and potentiometers.

The results of the variable coefficient solution for H(jw , t) are shown by
Figures 28, 29 and 30 for ® = 0.1, 0,0l. Figures 28 and 29 show that the
system function and frozen system differ considerably., The question of initial
conditions on H(jw,t) was considered, and Figure 30 shows several combinations
of initial conditions which are based on the frozen system function at 2 km,
The frozen system function at t = o was not used because the data used to
generate the wind model coefficients tended toward less accuracy at t = o.

Use of the excessively large values of Hf would also have required re-scaling
the equations (maximum values of Hr and Hi were both 0, 2). Although these

initial conditions did not produce entirely satisfactory results, one conclusion

was apparent. The shape of the system function curves, which were much
smoother than the frozen system function curves, show that the system func-
tion does not react as rapidly to rapid changes in coefficient values as the
frozen system function. This confirms the fact that stationary analysis of

rapidly varying systems can induce significant errors.
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w =0.1 w = 0,01
Computer Calculated Computer Calculated

t¥ H1_+jHi Hr+jHi Hr+jHi Hr+jHi

0 0.118 - 0, 3267 1.63 - 1.105

210,168 - 0.214 j 0,137 - 0,202 j 0.127 - 0, 001 j 0.127 - 0, 00319 j

3(0.122 - 0.172 j 0.135 - 0,154 j - 0.103 - 0,0019 j

4 - 0,123 - 0.079 j ‘0, 071 + 0, 000 j 0. 072 - 0, 00057 j

5]0. 058 - 0. 0015 j 0,062 - 0, 0023 j 0, 036 + 0, 0005 j 0. 036 + 0. 00055 j

60, 029 + 0, 0063 j 0. 0285 + 0, 00635 j| 0. 021 + 0,000 j 0, 019 - 0. 0008 j

710. 0265 + 0, 0055 j 0. 0284 + 0, 00565 j - 0. 0205 + 0, 00052 j

8 - 0. 0285 + 0, 0066 j | 0,022 + 0, 0008 j 0,022 + 0, 00055 j

9 0.0126 + 0, 0112 j| 0,0115 + 0,01 j - 0. 0076 + 0. 0007 j
10 - -0, 185 + 0, 0147 j - 0.0125 + 0,001 j

TABLE 1, FROZEN SYSTEM FUNCTIONS,

COMPUTER VS, CALCULATED VALUES

As final values of coefficients of the wind model became available, it
was apparent that they were quite different in form. Re-programming the
computer for final coefficients was undertaken in the time remaining and,

while this study has not been completed, one additional result will be discussed.

For a stationary wind model using the same differential equation

L4 .

Y + a3 Y + a Y =
o)

b X + b X
o

the transfer function by conventional Laplace transform methods is

bO + bls

2
s +tajs+a
o

H(s) = (38)
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It can be shown by Routh's criterion that the characteristic equation must not
have negative values of a_ora if the transfer function poles are in the right
half plane. If s = jw this transfer function is identically the frozen system
function. The frozen system is easily calculated from equation (38) even when
it represents an unstable system, and instability is not readily obvious from the
Bode plot. Final values of the wind model coefficients include negative values
in the range of h fromb 0 to 6 km. When the computer simulation of the frozen
system function for this range was attempted an unstable solution resulted for
the range 0 - 6 km. The solution converged to the frozen system function in
the range for which a; was positive. A tentative conclusion can be made then,
that the simulation method will not produce frozen system functions for unstable
situations. This also raises the question of realizability of the system as dis-
cussed by Reference (9), which requires that the poles of a time-varying sys-
tem function have time-invarient singularities. Note also that the poles of the
stationary and non-stationary systems are not generally the same, as was dis-
cussed previously.

The conclusions reached in this system function analysis may be restated
as follows:

1. The system function is a useful tool in studying frequency response
and statistical properties of time-varying systems when its use is justified
by the difficulties involved in its determination.,
2, The wind model studied has a degree of non-stationarity which makes

stationary analysis techniques inaccurate and possibly misleading.
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3. The computer simulation developed can be used to provide completely
mechanized solution for the system function, its application to multi-degree
of freedom systems becomes much more complex.

4., The combined system function for the Wind Model/Saturn V model
cannot easily be generated using this computer technique, transforming the
combined weighting function is an alternate method .

5. Initial conditions on the system function simulation are difficult to
obtain for the wind model due to the built-in inaccuracy in the coefficients of

the equations.
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presented in the previous chapters.

V. APPLICATION

The primary purpose of this study was the development of the techniques

However, to insure that the wind model

format was compatible with system analysis of a launch vehicle, a short digital

computer study was conducted to determine the bending moment response of the

Saturn V vehicle during a portion of its ascent through the atmosphere.

The

dynamic model utilized included rigid body equations of motion with a pitch,

pitch rate and accelerometer feedback control system.

Body bending was

determined at station 25 from time t =40 seconds to t = 90 seconds of flight.
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The vehicle equations are obtained in the following form:

Rigid Body Equations

I{t)p = - F XEB-QFl(t)a

m{t) Y = (F -X)o+ FS[3+ Q Fo(t) o
Control Equation

p = ao(t) é+ap(t) o+ g, (t) A
Accelerometer Equation
A =Y - g(t) ¢ =

Angle of Attack Equation

<l|€<

Bending Moment Equation

BM = M,ﬁ(t) B+ M'Q(t) a

(39)

(40)

(41)

(42)

(43)




The first five of these equations were then expressed in state variable form

by introducing

(44)

and incorporation equations (40), (41) and (42) in equations (39) to yield the

form
C ] — 7. A
P 41 a1, als P C1
b = az1 az; 33 ) + Jo VW (45)
’ %
r asl a3, ass r C2

Equation (45) were then solved on the digital computer using a deterministic
wind input to obtain a check of the computer program. The bending moment
equation (45) was expanded in terms of the state variables through equations (40),

(41) and 42). This give the form
BM = agq ptag ¢$+tagr (46)

The deterministic wind profile utilized was an approximation to the 95% wind
speed 99% wind shear profile developed by MSFC for launch vehicle design
and analysis and is shown in Figure 31.

The nonstationary wind input program was then set up by adding the wind

equation, developed in Chapter III, to equation (45)

v (£) + aj(t)y (1) + a v () = bi(t) 8(t) + b 5(t) (47)
W W o W O
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In setting up this program, full advantage was made of the fact that equation (47)
could be replaced by its homogeneous form with initial conditions on the proper

variables. The equations programmed were then

- - — — — -
p an a1z a13 0 ais P
4; azi 0 0 0 0 ¢
r = as1 as; as3 agy 0 r (48)
w 0 0 0 0 a4e w
_\:v 0 0 0 agy ass w

where W = ;’w’ w = Voo and the bending moment is calculated from equa-

tion (46). The coefficients used in equations (45) and (48) are presented in
Table 2,

The coefficients of the wind model, equation (47) are time -varying in
order to be compatible with the time variation of the study. However, the
independent variable of the wind model equation developed in Chapter III was
altitude. Consequently, it was necessary to change the independent variable

from altitude to time. This was accomplished by incorporating the altitude

equation

which converts the altitude-varying equation

d? w dw dm
bl = aslaledell +
T + a,(h) it + ao(h) w b; (h) ™ bo(h) m

79



TABLE 2

VEHICLE AND WIND MODEL COEFFICIENTS

%

-Fg Xg a -Fg X % F-X |, QF, QF;
an = ———————SIE - ; alz = ——I——SE ao +gz(—r;'+m° -g) =TT
a13 = _IQV_ Fp + FoFoXp 82 | | a1 = 1

(m - Fg gz)
* %k
ast = ay Fg a3, = F-X+QFo + Fg (20 - 82 8)

m - Fg g2 m - Fg g2
as3 = ~QFo a4 = __._Q_F?___

vim-Fg g2 ) vim -Fg g2 )
ag = 1 agy = - ao(t) Wind Coef.

%
ass = a1 (t) Wind Coef. 2 = oMpa
m- Fg g2

! / % V4 /
Mpgz[F-X+QFo-gm] + mMgp a, -Mg g2 QFO_MQ,

/
ag2 = + Mg 363 =

m - Fg g2 v(im- Fggz ) v

C1 = - a3 C2 = - ass
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to

dw 1 1 1 dv| dw 1 _

T F Hlalt) = e yy BT taWr w =

1 dm 1 1 dv
o bl(t)—&-t— + bo(t)—;z— T & m

or

dw? 1 dv | dw _ dm 1 dv
a t|al® -7 g g b et = mlt) g= o+ b () -
where

ny = 1

aj(h) = a(t) <

a(h) = a(t) >

(o} o v?2

b (h) = b (t) =

[o] o v

by (h) = b, (t)

The results of this study are presented in Figure 32 in the form of the
~variation of the bending moment at station 25 with flight time. Although the
deterministic program was run strictly to check out the computer program,
the close resemblance of the two curves is quite encouraging. However, the
limited wind data available for constructing the nonstationary model, the
approximate nature of the deterministic profile and the roughness of the in-

tegration program used here, precludes any comparison of the actual values
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of the bending moments,

This computer study does indicate that a wind model developed by the
techniques discussed hereinis compatible with a launch vehicle system when

utilized in a forward computation scheme as well as with the adjoint technique

for which it was developed.
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VI. CONCLUSIONS AND RECOMMENDATIONS
I, CONC LUSIONS
In general, the results of this study are most favorable, and it is be-
lieved that proper implementation of this model will open up the way to radical

new design concepts for complicated systems. Concrete conclusions of this

study are:

(1) An accurate nonstationary wind model can be synthesized by
the techniques developed during this study.

(2) The present model, presented in this report, is believed to
approximately represent the statistics implicit in the wind
data to within 10 per cent. As more refined wind data becomes
available, much higher accuracy can be developed in the syn-
thesis procedure.

(3) Combined system equations have been developed which can be

implemented directly for computer applications.

2, RECOMMENDATIONS
The outstanding potential of the system design concepts which are illus-
trated in the report can be realized only if steps are taken to refine the existing
model and develop confidence in the modeling by systematic verification studie
Several recommendations which are prompted by the results of this study are:
(1) . That the same synthesis techniques which have been used
in this study be used to define a wind model for the 600
wind sample which is being made available at the present
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(2)

(3)

(4)

(5)

(6)

time. This development should use smaller altitude varia-
tions in determining the covariance to insure the inclusion
of high frequency turbulence information in the model,

That a2 more sophisticated error analysis of the approximate
wind statistics be conducted utilizing the 600 wind ensemble,
Confidence limits on the data and computed statistics should
be carefully investigated.

That the order of the differential equations defining the wind
shaping filter should be increased if greater accuracy is
needed to represent more sensitive aspects of the wind model
which may show up with more and better data.

Hybrid analog computer, high-speed real time digital com-
puter, and conventional analog computer implementation

of the system modeling presented in this report should be
investigated thoroughly.

Verification and comparison studies of the results which

are obtained using this method should be begun immediately
so that confidence in the model can be developed and experi-
ence in application of the modeling concepts can be gained.
Extension of the present techniques for cases where discrete

non-linearities are present is highly desirable.
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APPENDIX I

DESCRIPTION OF LINEAR SYSTEMS

Linear systems with variable parameters have been discussed throughout

this report. No fixed mathematical method exists tor the solution of linear

differential equations with varying coefficients although digital and electronic
analog techniques have facilitated and influenced the study of such systems,
The mathematical or statistical methods discussed in this report which allow

quantitative study of such systems depend on two basic assumptions,

If the system is defined by the differential equation:

n n-i
d
an® S 4 an, LY g SEY

then:

(1) The deterministic function Y (t) satisfies the differential equation

n — n-t < d__
an(t)g—d—ti’x—vﬂl + an-1 (t)g__a.tﬁ.r{:.gl’l. 4 o e o 4 a](t) dvf(t)

m =
o = d X(t
+ aolt) Y(t) = bo(t) X (t)+ < * « + bp(t) —é-;nl—(_)
where -{((t) = E {y(t)} and X (t) = E{x(t) } with appropriate initial conditions.

(2) If the input to a linear system,x (t), is normal, then the output of

the system is normal.

The truth of these statements will be indicated by the following considera-

. dy(t
tions. Suppose that __dyti—)_ exists and can be defined as the limit
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dt h—wo h

Then, taking the expected value on both sides,

dyt) | gy XEXR)-y()

24 - fir paeem v )

then, since the expected value of the limit is equal to the limit of the expected

value, this becomes

E [dz(t)] _ lim E [ y(t+h)] - E(yt)
dt h—=o0 h
giving
g Ay(t)  _ dE[y(t)
dt dt

The above may be extended to higher order derivatives to yield

I 0] X €700 S

dt dt

Thus, taking expected value of both sides of differential equation of the

system yields

d” Yit)

qn-1 ¥ v
ant) S+ ano (1) ————,—dtr}[_(t) Fooo o 4o,y LX) ;{t‘t)
—_— — myx
Foaglt) T(t) = bolt) X (0 ++ » » + bty S8

subject to the appropriate initial conditions.
In order to demonstrate that if the input to a linear system is normal

then the output is normal consider the linear system as being defined by the
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impulse response function.

t
y(t) = fo g (t,7) x(1) dr

Suppose this integral is approximated by the sum

y(t) = ? g (tri) x(T9) A7y

Yj(tj) is now a linear combination of normally distributed variables
X3 (Ti ). It is well known in statistics that the linear combination or sum
of normally distributed variables is normally distributed. We omit details
but it is now evident that y(t) is the limit Yj(tj) as ATj—eo0 and thus

is normally distributed,
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APPENDIX II
DEVELOPMENT OF COVARIANCE DIFFERENTIAL

EQUATION

In Reference (5) it is shown that

p(ixt) | d%ylp) 3%+ T Ryy (ti,tp)
dt; n dt; 8t1n 8t;_ m *

Now, multiply both sides of the differential equation

™ x(ty)

n
an(tl)g—l(—g—) torttag(ty) ylti) = boltr) x(ty) + 0 "'bm(tl)ddtl

dgy, n
by vy(t, ), and then take the expected value of both sides of the equation to obtain

the following result

dn d
a’n(tl)é—{l_ﬁ' Ryy(tlytz)'*'"' +al(tl)c'1_£l— Ry—y(tl:tz)

d
tag(ti) Ryy(tistz ) = b (t1) Ryy (ti,tz ) + 0+ b (t )al—m Ryy (tistz)

Now, consider the case where the input x(t) is white noise and the out-

put some variable y when y(t, ) is defined by
t2

y(ty) = gtz,t) x(7) dr t2> 71
o

Multiply both sides of this equation by x(t;) and take the expected value to

obtain

tz tZ
ny(tl»tz)=f gtz , T ) Ryylty, ) a =f gltz,7 ) &8(r-t1) dr
(o) o

If 1>t then ny (ti,tz ) =0,
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Thus

a'n (ﬁl 7

If

Thus

d"Ryvltss tz ) d
& Ryylta, t2 —
+ + al(tl)dtl RYY (t1, tz2)

dt; 0

+a0(t1) Ryy (t1,t,) =0 for t1 >t

£t < tz, ny(tx:tz ) = gltz, £, )

dn
an(t1)

d
=b0(tl) g(tz ’ tl) + bl(tl)d'Tl' g(tZ: 1:l) + ...+bm(t1)

Ryy(ti, tz ) 4d
A + oot ap(ty) at Ryy (t1, t3) + ao(tl) Ryy (tr, t2)

dmg(t}. ’ tl)
dt; m

In Appendix I it was shown that Y(t) and X(t) satisfied the differen-

tial equation of the shaping filter. Thus Y(t)—:i'(t) and x(t)-0 will

satisfy the differential equation of the system where x(t) is white noise

with zero mean. Therefore, repeating the same argument as presented for

R(ty,t;)

, one can easily show that

a" ,t
an(tl)__gﬂl_# +"'+a1(t1)‘cl(i(£‘,'£2‘—)_ +ao(t1)C(t1,tz)= 0 for t1 > t,

and

dg, b dt;

n
d C(ty,t dC
—-———’—g— [ 3N I ) 3 -
a-n(tl) (&, ) + + a;(hy )—"‘—_’(tl t2 ) + ao(tl) C(t1,t;) =

dg; ? dty

by (t1) gtz , t1) + by (ta )d—d‘

+ LN BN
t1 g(tZ atl)

g4I ,
g(tz ) t )
+b __(tl) at, ™ for t1< t; .
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APPENDIX II1
WEIGHTING FILTER SYNTHESIS
INITIAL CONDITIONS

in Reference (1) it is shown that the following boundary conditions or ini-

tial conditions hold for the derivatives of the function C(h;,h, ).

C(h,,h; ) as being defined by

2
C(hy,h; ) = j g(hy, ) g(h, ,A)d\ for hy > h,

Clhyshy ) = f
(o]

Ohl

g(hy, \) g(hz, \) d\ for hi< h,

Consider

Since g(h;,h, ) is a weighting function or impulse response function for

a second order system, it has the following initial conditions

dlg(hl h ) - bl (hz ) for i=o
dhy 1 . |
l hy =h2+ bolhz ) - ay g(h; ,h; ) for i=1
d C(hy, by ) { b dg(hy, )
" - glh, 1) SERLAY g
dh, + dh, X
hl:hz (o] hl = hZ
and
d C(hi,hy) by da(hy )
AL LAV S = 1,
dh, ) g(hz ,\) —g—————dhl dx
hy =h, o hy = h,
+ g(hy ,hy) g(hy,hy) )
hl = hz
Subtracting the last two derivatives yields
dC(hy,h; ) dC(h,, h, B
dh, - d;u ) = g?(h,,hy ) =[Dby(h)]?
- +
hl = hz hl = hZ
or  by(h, )=\ dCtu,h;) _ dC(h,hy)
hl =hz hl = hZ
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From the derivatives given in the preceding development, and taking a second

derivative,

h,
[ 8% g(hy,\)
o

9° C(y,hy ) oh, * gthz , 1) dx

dhy + +

h; =h, hy =h,

and
9° C(hy,hy ) - 9 "y 42 -
TTanZ = , e e

ahl ) * g(hz hl ) [ 8h1 g(hl L4 hZ ) + ahl g(hz ] hl ) ]

h] = hz

9 dg(hy,h, )
b gl 5 gl hy) ¢ 2EELRZ S g hy)

™ 92 gy ,n)
L I T
1
(o]

it is seen that by =h;
82 C(hy,h; ) 3% C(hy,h;) -
oh, T oh, + -
h; = h, hy = h;

a_

- ] -
Zg(hl9h1)[ oh, g(hy,h, ) +_é_}; [g(hz , h; )]

h, =hz

For a second order system,

0 92
ao(hl)c(hlshz)"'al(hl)m C(hl:hz)’l'bh—lz— C(hy,hz ) = 0 for hy > h,

and

2

L5} 9
a (h1) C(hi,h, ) +ay (hl)ﬁl— C(hy,h;) +_8T1? C(h1,h; ) = b (h1) g(h; ,hy)

d
+b1(hl)<—iE g(hy ,h) for h; < h,
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2

9 0
Thus [a(h;) C(h;,h,; )+ a;(h;) 3he C(hy,h; )+ 3hi2 C(hy,h;)]
1 1 +
h]_ = hz
) 8% C(h,h;)
~[2 (1) Clhi,hy ) +ai(h) g Clhushy) + o ) )
h] = hz
d
= -[ both1) g(hz, hy) +by(hy) o g(hz , hy )] ]
h = hz
Since ag(h1) R(hi, h; ) n ag(hi) R(hi,hz ) - and
hl =h2 hl =hz
3 3 ) -
since ;- C(h;,h;) - =i C(h,h;) = - g°(hz,h; )
oh) . T oh; -
h, =h, h) =h,
this equation simplifies to
2 2
2 - a C h ,h ) a C h ,h )
'al(hz) g (hZ’hZ) + Bhlz + - ahlz )
hl =hz hl = hz
dg(h, , h
=-[bo (hy) g(hz ,h1) + by(hy) _g%}_lz:_ﬁ]
1 -
hl =hz
. dg(h ,hg- -
Since ( c;hl ) = bo(hl ) -aj(h) by(h)
hy =h,
and since g(hy,h;) = by(h;), then
- ai(h, ) by?(h;) + 8 C(hy,hy) - 9 c(hhy) _
3 hy . 3 h i
hy = h, h = h,
- b (hy) by(h) - b —BhzM)
(o] z a hl
hy =h,




Substituting for

BZC(hl,hz) _ azC(hl:hz)
oh; ahy

+
hy =h, h; =h,

as developed from the boundary conditions, yields

ag(h
- ai(h,) g(hy,h,) - 2g(hy»h, ) __g.é_hll’_hz_)_ _ 3 (hazh, h)
+ + ! -
hy =h; hy =h, h; =h,;

a
= -bo(hz) g(hy,h; ) - g(hy,h;) Bhy gthy ,hy)
hy =h,

gthz bz )[ + b (hy) - ai(h; ) g(hy  ha )] - {2g(hy, by )[i&(_%ilu_) B Eg_g_;.éﬁ)]}

9h, :
h) =h2
dg(h,,h, ) dglh, ,hy)
hy,h —B\, N, ) oglhy ,hy) -
g{hy, h; ) [ 5h, - ™ ]‘ ) 0
hl =hz
Thus azacghl,hﬂ _ 8%C(h,h;) - o
h - 9 h? =
! hl =hz h ! h1 =hz+

It should be noted that the data did not fit this condition which indicates that the
data is rather erratic or a second order differential equation is of too low an order.
A more detailed explanation of derivatives will now be given in terms of

R(hi, h; ), instead of C(hi,h, ).

1=h,

97



Differentiation of R(t, T)

t
R(t:T) = j g(t, )\) g(T’ )\) dX

- 00
First Derivative

t+At t
1
“‘—d%im)= At f glt+ at,\) glm,N dk-f glt, \) gy ,A) dx
o o )
At
t t + At
lim d
“Atwo gt + Aat,\) g(r,A) dhv + | g(t+ At, \) g(7,\)d)r
-w t
t 1
- j gl(t, \) g(T,)\) d\ —A—t'
- 00

t
lim Jr [&(t+ At,\) - g(t, N\) 1 glr,\) a

T At+o At
- 00
t + At
At
t

t t+ At

dg(t, \) lim glt+ At, \) g(T,\) dX

dt glroh) dh At
0 t

t
[ dg(t, \) g( T,\) dh + glt, t) g(T,t)

dt
-
Second Derivative
d? d dglt,
e [ R(t, T IF T ___g(t_"') g{r, \) dx + g(t,t) g(T,t)
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First j“? [ glt,t) g(T,t)] = gl(t,t) f—t g(T,t) +g(7,t) ft- glt, t)

11m { g{t,t+ A&t) - g(7,t) }
At

e [g( :t)]"

lim ¢ g(t +At, t+At) - g(t, t) }
A teo At

'::—t'[ g(tl t)] -

lim gt + At, t+ At) - gt +At,t) +g(t+at,t)- g(t, t)

B A t+o

At

_ lim gt + At, t +At) - g(t + At, t) + BlttaAtt) - gltt)
At-wo At At

d
= E—T [g(t’T)] T=

d
= a’ [g(T’t)]

=t

d , d d d
-d? [g(t :t) g(T,t)] = g(t:t) aT g(T:t) +g(T’t)[; g(t:TL._ +dT g(t’ L=tJ

tt At

t
dg t, A dg +At . ~dg(t, A
dt f : : g(m, \) d)\-At‘-.o Ioo (;t ot g(7, ) -Ioo_gé{—) g(r, N
- At
t
_ lim dg(t + At,\ dg(t +Aat, \) dg(t,\
T Ateo ﬁ dt L gm0 A J:oo : dt - gét gln Nan
At At

dg(t, A b
= S8bM) g +f SEBN o
- 00
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So now

dg(t, \
—z- [R(t.'r)]J’ ———g%i) g( T, N dh+ g(T, ) —gﬁ——)

+ g(t,t) dt g(r,t) + g(, t) = dt g(t»t)

2 t 2
o [Rx (t,v)]=j AR ey a
- 00

d
o [etT)] b+ st o oe(mt)

d
+ 2g(T,t) {&'fr' g(t, )
T=t =t

2

dg(t, \=t _
also, jd;z- [Rx(t"")Fj ——(;‘E(zt'—' glr ,)\)d)\+—g-fit——) glt, A= t)

+ g(t,t)(%‘ g( T,t)+g(‘r,t) {-(;_i-—r g(t’ T= t) +.i g(t,T=t) }

dt
80 -Sl—zz [ Rylt, 7)) - dE; R,(t, T) + = AR"
dt t= t =
= d
=[.(lg(_ti'_t)‘_ﬂ g('r,\:t) + g(t,t) Et_ g(T,t)
+ g(T, t){d [g(tm-t)]+—g(t¢t)1‘
t= 'r-

glr, ) dg(t{;t)‘zt) + dg(;;”t)]
L t

- - d s d , TS
+ glr, 1) ggtt) + g(;TT t)]l
t

Evaluate di(t_:)\_)_

from adjoint equation
A
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D* (p,7) golt,T) = &t -7) T>1¢

d d
D* (p7) x = — 3 [az2(7) x(+]] e [a1(D x(7)] + aoglr)x(T1)=0
Expanding
a? go(t! ™) dgo(t: T)
Tar -ar(m) 4.t [[ag(d~-ai(r)] g ltr) = 6(t-1)
it may be seen that
go(t7 ) + = 0 = goltyT)
t=T=1T t=7
ago(taT) = _1 = 3gQ(t,T)
a7 9T
+ -
t=T1=17T t=1r
Qg-%-(;t’ll = - 1 because 6(t - 7) is effectively a negative impulse.
t= —r+ Think of as derivative of u(t-T)and u(7-t).

It is further known that
a
glt, ) = bo(r) golt,7) -5 [ bi(7) golty7)]

+
Evaluatingat t= v = 7T

gt )| = b gyt T) - o [ba(7) go(t,f)]‘ X

t=T -1

)
= {-[ 53 bi(1) ] goltem) - bi(m) — golts ™)
=7

+ bi(T). (This is in region of nonrealizable

weighting function, )
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s
+ Solution of D (p, T) go(t, T) =d8(t-T)

* Solution of D) (p, 9) go(t,t-—O) = §(8)

d N
where p = T replace Tby0in D (p,t) go(t,‘r) = 6(t- 1)
go(t, T)
*
Realizable
i
t [}
1 | t
7 / \
/
/ / 7
/ / /
/ /
/
y /, /
X = ===fym - = i
Y / /
’ / 4
’ / /
/ // /
/
/ ’ /
_____ el e - — - — — — -
/ /) /
/ / /
/ / /
/ / /
py / /
/
T ,/ /7 /¥l e - - -~ o - —= - -
/ /
/ /
/ /
/ / t=aT
/ /
/
+ Nonresalizable /
/
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Now

since

Using

Evaluate_

(]

, db g
feltr) o da ] v L (gt bym)

82
- Sz [bl7) goltr) ]

b () 9g,(t, T) p2b1(T)
a7 BoltT) t—F—— Db(T) - or2 BoltT)
3golt, 7)) Bbi(T) 8% gylt,T) by(7) - 8P1(T) agolt, )
3T 9T 31‘2 9T 9T
db
- b (1) + —————E;(TT) - —_T_azg%(:’” - bi(T) + abgT(T)
azgo(t."')
T a2z = - ap(T)
9T + +
t=r=r1 t=Tv=171
b+ 2 BTy ()
t=T= 'r+
g(r,77) = by(7)
s A
ég'(t ) = bo(T) - al('r) bl(T)
t=\=71
a (t,T) — '
_L_—aT = - b(7) + 2b' (v)+ aj(7) by(7)
t=)\=T=T+
_ oaglt, \)
= -
t= )\='r+
dZ dZ
ez [R (tT)] - W [Rx(t,T)] = AR"
t=r t =T
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AR" =

b (1) =

by (T)

AR“

2by (

{ 2[ by(7) -a1(7) bi(r)]

T)

+ Zb'l(T) }

+oa(n) bi(r) o+ 22l

9T




Numerical Procedures

a2
To obtain the values for C(hy,h; ), d—fl— C(by,h;)and WC (hy,h; ), as well
1 1

as g(h, ,h;) and% g(h, ,h;) to be utilized in finding the coefficients of the

1
second order differential equation of the shaping filter using regression analy-
sis,demanded smooth data, The data as presented by the 200 wind profiles

produced an erratic distribution of C{(h;, h;)'s. Thus, smoothing procedures

d C(h;,h
were necessary in order to utilize numerical techniques to find —~—a(—h—1—’——2—2

1
d®* C(hy,h;z)

and ah, 2

The first smoothing technique involved fitting a third degree polynomial
to the data. However, this digital computer smoothing technique did not prove to
be as useful as expected, since it smoothed out certain needed slope charac-
teristics of the curves near h; = h, . A method was then devised to involve
a large number of points near h; = h, and to fit a typical curve as indicated
in the figure on the next page.

The data was smoothed in two directions; namely, C(h1,hz ) for hz fixed
and then C(h,h; ),h; fixed, This double smoothing technique enabled the utili-
zation of very erratic data in the process of obtaining first and second deriva-
tives. The smoothing was handled separately for h;>h, and h;< h, because
of the discontinuity of the derivatives of C(hj, h; Jacross the line hy = h, ,

Also, certain mathematical developments, developed later, were

useful in the data analysis. The smoothed values for C(h;, h; ),‘“——"‘dcglhl"‘hz )
1
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dz C(hl :hz )

and -——d—h—z——————are given in the following tables,
1

The usual finite difference formulas as found in most numerical analysis

dC(hi, h d®C(h;,h
texts were used to approximate the derivatives, ———'——“"(d}i 2) and (Ci:}(xllz z) .
A 1
d d?
Clhi,hy )and C(h%’hz )for different values of h; < h)
dh, dh,

were used in the regression analysis to find ao(h1 b, ai(hy).

The smoothed values of

The ao(hl) and

a1 (h; ) as computed by this method for different values of h; are indicated in

Figures 8 and 9 presented previously.

Both linear regression and the numerical procedure which will now be
developed were used to find the bg(t) and b;(t) in the linear second order

differential equation, ag(h) y(h) + a;(h) dy(h) + d? y(h) = bo(h) x(h) +
dh dh*

b; (h) dx(h) , used to represent the linear shaping filter converting white noise
dh

to random winds.

Since g(h,;,h; ) is the impulse response function or weighing function for

this filter

dg(h;, h, ) T d? g(hy, h; )

a (hy) g(hy, h; ) +ay(hy) an, ah 2 =0 for h; > h, .

2 h;,h .
By approximating ég%%—’—}lz——)- and d gd(hl‘)‘, 2) in terms of differ-
1 1

ences representing three points a system of equations may be obtained to be

utilized for numerically obtaining g(hj,hy) for points near hy = h,. If hyq,

hiy and hyp, are three consecutive values of hy mnear hj = hp, then

dg(h,h 1
dgthu,hy) = — [ -3 gthio, hy) +4 glhir, hy) - glhiz, hy )]
dh; 2
h, =hjq
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dg(hy,h;)
ahy

[ 'g(h109hz)+ g(hIZs hz)]

N

hy = hy

hy,h 1
et ) = 3 [ g (ho, he) - 4g(hu, by )+ 3g(hz, )]
hy = hi,

and

2
d d}?vhz) = g(hig,» hy) - 2 g(hn, hy) + g(hy; , hy)
! hy = hio

In terms of three consecutive points the second derivatives are assumed con-
stant. The points are taken close enough together to minimize error.

From the preceding numerical substitutions for the first and second
derivatives of g(h;, h, ) in the differential equation of the shaping filter, the

following system of difference equations may be obtained.

[ag(hu) - 2a(h)] glhu,h; )+ ar(hn) glhiz,hy ) =

[ ag(hip) - 2a1(hyo) +a1(bnn)] glhio, hy)

[agthn) +2a3(hiz)] gh,hy) +[ arthn) - aghiz) - 2ai(h;) ]

g(hiz , hy ) = a3 (hny) g(hio, h2 )

Now, it has been shown that

=\/ dC(hjo, hp )

dhy

d C(ho,h; )
- dhlo +
hjo=h; hio=h;

g(hlo: hZ )

Thus, the system of two equations and two unknowns can be solved for

g(hiy,h; ) and g(hy; , h, ). Substituting g(hig, bz ), g(hn,h; ) , g(hy;,h; ) when
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h, = hjo in the formula for d fi};ll’h )

1]

h)
h,

hio
hio

enables one to compute bj(hjo) from the formulas.

by (hyo) = g(h1, h; ) and
h; = ho
h, = ho
dg(hl 3 hg )
b_(h;0) = + aj(hjo) by(hjo) .
o dh;
hy = hyo
h, = hjo
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Synthesis Techniques

Regression Analysis

The regression analysis utilized in the determination of the wind model
coefficients was developed through multivariate regression techniques and
applied to the wind model synthesis by the methods described in Section III-4
of this report. This app‘roach proved to be the most adaptable method of deter-
mining the coefficients and was later shown to be accurate through analog
computer mechanization of the problem. The techniques that were utilized and
proved to be only relatively successful or too cumbersome are briefly outlined

in this Appendix.

Orthonormal Function Expansion of R(h,T)

A second approach to the determination of a,(h) and ag(h) was the ex-

pansion of R(h, T ) in the form
n
R(h, ) = Z ¢3(h) yji(T)
i= :

where the ¢ i(h) functions were chosen to be solutions of a constant coeffi-
cient differential equation. This was done to find the constant coefficient
equation which best fits the function R(h,T). The ¢ j(h) are defined to be
the set of homogeneous solutions which satisfy D(p, h) Ry(h, T)=0, t>7T in

the second order form. These ¢ i's are also by definition the homogeneous

solutions of the weighting filter equation. The ¢ ;'s which best fit the R(h, T)

data were found to be - 2t
19000 . wt
t) =
¢1( ) e 2 Sin 19000
o O T 2 . W
¢z (t) = ¢ 19000 [ cosygypg t -5= 5injog0g ¢ ]
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These two functions are constructed so as to be orthogonal to each other. The
constants which cause them to be orthonormal have been left out.

gy (T) and Y, (T) have been chosen so that the error in the approxima-
tion R(h,v)= ¢ (7)) ¢é,(h)+ Y,(7) ¢, (h) is minimized. With the
¢ function chosen, the approximation is good to about 10% in the range of
h from 4 to 14. The end points of R(h,T ) are not well-matched by this
approximation.

The differential equation coefficients a,(h) and a,(h) were found to be

. 021

ay (h)

i

ao(h) . 00684

and the homogeneous weighting filter differential equation is

%{1 + .0215% + . 00684 y =0

The first of the following tables shows the per cent error in the approximation to
Ry(h,'r) and the second shows the values of Y (1) and Y,(7) for the best fit to Ry(h’ T,
Analytical Relations for by (h) and bo(h)

Attempts to define b;(h) and b,(h) completely in terms of boundary values
for R(h, 7) and its derivatives were not totally successful, An expression for
by (h) in terms of first derivatives of R(h,T)at h=1t and h= 1 is
easily obtained. The expression for bo(h) has proven to be very elusive, if

there is one. For the second order shaping filter equation all attempts to
define bo(h) in terms of the higher derivatives of R(h,t) proved unsuccessful.

These derivations are included previously. The advantage of obtaining an
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.2t Tt 2t Tt .2 wt

t $1(t) = e "19000 sin 19000 &, (t) = e 19000 [ cos 19000 ~ #in 15600 ]
Yi(T) Y2 ()
1000 .160 +.95
2000 .310 + .88
3000 . 443 +.79
4000 .558 +.68
5000 .652 + .56
6000 .724 +.43
7000 L7173 +.29
8000 .798 +.15
9000 . 802 +.01
10000 .783 -. 11
11000 .742 -.24
12000 . 685 -.35
13000 . 611 - .44
14000 .523 -.52
15000 . 427 -.58
16000 . 323 : -.62
17000 . 214 - .64
18000 .106 - .64
19000 .0 -.63
20000 -.102 - 60
TABLE

VALUES FOR {,(7) AND {,(v) WHICH GIVE BEST FIT TO R(h,T)
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explicit relation for b (h) is obvious and would result in a great simplifica-

tion of the synthesis procedure.

Analog Computer Synthesis

Several attempts were made to derive a,;(h) and a,(h) on the analog com-
puter both by hand iteration and by a closed loop iteration procedure. This
method is most effective for derivation of a,;(h) and ao(h), coefficients of
the homogeneous equation, by forcing the homogeneous solutions to match
Ry(h,'r ) after inserting the proper initial conditions. The initial conditions
are found by iteration also. Ry(h, T ) was set up on a function generator for
one value of T at a time beginning with 7 = 0 and a closed loop matching
circuit was set up to force either a;(h) or agy(h) to the value necessary
to zero the error between the shaping filter output and the function Ry(h,'r ).
These methods were never really satisfactory and the results were not com-
parable with those from the regression analysis. It is felt, however, that
there is a good possibility that an analog synthesis technique could be imple -
mented if a sizable effort was oriented in that direction. If an accurate matrix
method could be formulated to give g(h,T ), then the analog computer synthesis

would be more attractive because b;(h) and bg(h) could be obtained directly.
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APPENDIX IV

OPTIMAL CONTROL FORMULATION

OF WEIGHTING FILTER SYNTHESIS PROBLEM

j (t) = noise
n

Jd(t) = desired output

s ———

r(t) = actual output

h(T,t)=o t-r>t

T<O
(1) Inputs are zero for negative times.
(2) Noise process is specified only through the autocorrelation.
(3) Original problem is formulated to minimize the mean square ensemble
difference between actual system output and desired output.
k, k k k k
ift) = F[ s(t), n(t) ] = "s(t) + n(t)
k T k
r(t) = j h(T,t) ift -7 ) d~ by convolution
o
(4) d(t) is allowed to be any specified operation on the signal component

k k
of i(t) which is s(t).

(t) ke(t) = system error ke(t) = k[ r(t) - d(t)]

t
ke(t) =J h(T,t) ki(t -7 ) dr - kd(t)
o
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k S
Find h( T,t) such that the mean square ensemble average of {Tety} is

a minimum,
T

T
f h(T,t) Si(ti-t) dr - Sd(t) jh(r:tz)ki(tz -r) dr - d(t; )
(o] o]

Ke(t1) elts )

T T K
j j h(r,t, ) h(t,t1) ity - 7) i(t; -r) drdr
o o

T

kd(tz ) J
o

kat) Xty )

T
h(T,t) ki(tl ~-1)dT - kd(t; )J h(r,t; ) ki(’cz -r) dr
o

-+

T T
k
ke(tl) e(tz ) j J h(r,t; ) h(t,t;) i(ti-7) ki(tz -r) drdr
o )

T
-f h(r, tz ) ki(tz - 1‘) kd(tl) dr + kd(tl ) kd(tz )
(o)

T
f h(T,t) St -7) Sd(t,) dr
)

by ensemble averaging ke 2 (t)

k

k T (T K
< e(tl)e(tz)>=j J h(r,t, ) h(t,t;) < i(t; -r) i(t; -1) >drdr
o o

T T
: f h(T,t1) < Ni(ty - 1)d(t ) > d T j h(r, t; )< i(ty - 1) "d(ty)> dr
(o} (o}

k k
+ < d(ty) “d(ty ) >
Let vy i (t1,t, ) = autocorrelation function of input
i
k k
= < it -r) ity -7) >
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ydd(tl yt2 ) = autocorrelation function of desired output

< kd(tl ) kd(tz )y >

tiand t; show dependence on time of observation,

Y .d(tl vt ) cross correlation of the input message with the desired output.
i

< Sty - X >

k, k
Y g4tz » 21) < Tiftr - T) d(ty) >

sb we have

T T
< ke(t;)ke(tz) > = f fh(r,tz)h('r,tl) yii(tz -r, 1 -7)dT dr
r ~© “o

T

k
- h{(T,t1) Ydi(tl -7,t; )dTr - h(r,t; )yid(tz -r,t;)dr
o O

+ Ydd(tl ’ tZ )
The input process is stationary, hence

- - &
Yylte -t -7) = Do(r-7)= 5= 6(r-7)

The h(T,t) which gives minimum < ke(t) > is called the Optimum Weight-

ing Function.

A necessary and sufficient condition that h(7,t) be the Optimum Weighting

Function is that it satisfy
t

Vit - rt) = foh('r.t)yii(t -1, t-T) dr 0

A
H
A
H
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Recalling that 1"ii (r - 7) is the stationary correlation function for the

input
put, ¢
Viglt - mt) = foh(m) T, (r-7) ds 0srsT
Furthermore, if rii (r -7) represents white noise ,
I‘ii(r -T) = -‘1—;— 6(r -1) = white noise autocorrelation function.
Then
T
- = - - < <
t k k
Yid(tl _rltl) = ]h(T!tZ) < i(tz -r) i(tl - ) > dT
o
T
= AZ_ fh("’,tz) S(r - T) d-
o
A
= _2— h (rs t2 )
T k k
Yy (01 =7, t2) =fh(7.t1) <Slt- 1) ity -7T) > dr
o]
A T
= h(7,t;) 8(r -7) d-
o
A
= —2— h(ro tl)
- _ A _ A
Yid = Ydl = 2 h(r,tz) - 2 h(rstl)
I. T, (r-7) = y,.(t; -r t-T)=—A—-6(r-'r)
ii ii 2 » M 2
A
I, vy id(t -~-r,t) = > h(r, t)
A g T
A
—2' h(r,tz) h(T,tl) 6(1' -T) dr dr - —Z—f h(T,tl) h(T,tl) dr
o o T o
A
-'z_f h(r,v_tz) h(r,tz)dr +Ydd(t1,tz)=0
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T T
%j h(r, tz) h(r,tl) dr -%f h(T’tl) h(T’tl)
(o] o

T
- A h(r,t; ) h(r,t;) dr + y,.(tistz) = 0
2 » V2 » V2 dd 2
o
since h(r,t;) = h(T,t1)

T
A
Ydd(tlvtz) = -'E‘f h(r,t; ) h(r,t;) dr
o]

+ A h(r,tz) h(r,tz) dr

o

As shown previously

_ A _ A
Vid Vg = 3 hmt) =5 hirt)

then
T

A
yd(tl,tz) = TJ h(r,t, ) h(r,ty) dr t) <T
)
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"The aeronautical and space aciivities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropsiate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of
importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribu-
tion because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated
under 2 NASA contract or grant and considered an important contribution to
existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English. '

SPECIAL PUBLICATIONS: Information derived from or of value to NASA
activities. Publications include conference proceedings, monographs, data
compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Ioformation on tech-
nology used by NASA that may be of particular interest in commercial and other
non-aerospace applications. Publications include Tech Briefs, Technology
Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C, 20546




